sw <- swiss[1:5, 1:4] # select a manageable subset
sw[1:3] # select columns
sw[, 1:3] # same
sw[4:5, 1:3] # select rows and columns
sw[1] # a one-column data frame
sw[, 1, drop = FALSE] # the same
sw[, 1] # a (unnamed) vector
sw[[1]] # the same
sw[1,] # a one-row data frame
sw[1,, drop = TRUE] # a list
sw["C", ] # partially matches
sw[match("C", row.names(sw)), ] # no exact match
try(sw[, "Ferti"]) # column names must match exactly
swiss[ c(1, 1:2), ] # duplicate row, unique row names are created
sw[sw <= 6] <- 6 # logical matrix indexing
sw
## adding a column
sw["new1"] <- LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1:5] # ditto
sw[, "new3"] <- LETTERS[1:5] # ditto
sw$new4 <- 1:5
sapply(sw, class)
sw$new4 <- NULL # delete the column
sw
sw[6:8] <- list(letters[10:14], NULL, aa = 1:5)
# update col. 6, delete 7, append
sw
## matrices in a data frame
A <- data.frame(x = 1:3, y = I(matrix(4:6)), z = I(matrix(letters[1:9], 3, 3)))
A[1:3, "y"] # a matrix
A[1:3, "z"] # a matrix
A[, "y"] # a matrix
## keeping special attributes: use a class with a
## "as.data.frame" and "[" method:
as.data.frame.avector <- as.data.frame.vector
`[.avector` <- function(x,i,...) {
r <- NextMethod("[")
mostattributes(r) <- attributes(x)
r
}
d <- data.frame(i = 0:7, f = gl(2,4),
u = structure(11:18, unit = "kg", class = "avector"))
str(d[2:4, -1]) # 'u' keeps its "unit"
Run the code above in your browser using DataLab