pracma (version 1.9.9)

arclength: Arc Length of a Curve

Description

Calculates the arc length of a parametrized curve.

Usage

arclength(f, a, b, nmax = 20, tol = 1e-05, ...)

Arguments

f
parametrization of a curve in n-dim. space.
a,b
begin and end of the parameter interval.
nmax
maximal number of iterations.
tol
relative tolerance requested.
...
additional arguments to be passed to the function.

Value

Returns a list with components length the calculated arc length, niter the number of iterations, and rel.err the relative error generated from the extrapolation.

Details

Calculates the arc length of a parametrized curve in R^n. It applies Richardson's extrapolation by refining polygon approximations to the curve.

The parametrization of the curve must be vectorized: if t-->F(t) is the parametrization, F(c(t1,t1,...)) must return c(F(t1),F(t2),...).

Can be directly applied to determine the arc length of a one-dimensional function f:R-->R by defining F (if f is vectorized) as F:t-->c(t,f(t)).

See Also

poly_length

Examples

Run this code
##  Example: parametrized 3D-curve with t in 0..3*pi
f <- function(t) c(sin(2*t), cos(t), t)
arclength(f, 0, 3*pi)
# $length:  17.22203            # true length 17.222032...

##  Example: length of the sine curve
f <- function(t) c(t, sin(t))
arclength(f, 0, pi)             # true length  3.82019...

## Example: Length of an ellipse with axes a = 1 and b = 0.5
# parametrization x = a*cos(t), y = b*sin(t)
a <- 1.0; b <- 0.5
f <- function(t) c(a*cos(t), b*sin(t))
L <- arclength(f, 0, 2*pi, tol = 1e-10)     #=> 4.84422411027
# compare with elliptic integral of the second kind
e <- sqrt(1 - b^2/a^2)                      # ellipticity
L <- 4 * a * ellipke(e^2)$e                 #=> 4.84422411027

## Not run: 
# ##  Example: oscillating 1-dimensional function (from 0 to 5)
# f <- function(x) x * cos(0.1*exp(x)) * sin(0.1*pi*exp(x))
# F <- function(t) c(t, f(t))
# L <- arclength(F, 0, 5, tol = 1e-12, nmax = 25)
# print(L$length, digits = 16)
# # [1] 82.81020372882217         # true length 82.810203728822172...
# 
# # Split this computation in 10 steps (run time drops from 2 to 0.2 secs)
# L <- 0
# for (i in 1:10)
# 	L <- L + arclength(F, (i-1)*0.5, i*0.5, tol = 1e-10)$length
# print(L, digits = 16)
# # [1] 82.81020372882216
# 
# # Alternative calculation of arc length
# f1 <- function(x) sqrt(1 + complexstep(f, x)^2)
# L1 <- quadgk(f1, 0, 5, tol = 1e-14)
# print(L1, digits = 16)
# # [1] 82.81020372882216
#   ## End(Not run)

## Not run: 
# #-- --------------------------------------------------------------------
# #   Arc-length parametrization of Fermat's spiral
# #-- --------------------------------------------------------------------
# # Fermat's spiral: r = a * sqrt(t) 
# f <- function(t) 0.25 * sqrt(t) * c(cos(t), sin(t))
# 
# t1 <- 0; t2 <- 6*pi
# a  <- 0; b  <- arclength(f, t1, t2)$length
# fParam <- function(w) {
#     fct <- function(u) arclength(f, a, u)$length - w
#     urt <- uniroot(fct, c(a, 6*pi))
#     urt$root
# }
# 
# ts <- linspace(0, 6*pi, 250)
# plot(matrix(f(ts), ncol=2), type='l', col="blue", 
#      asp=1, xlab="", ylab = "",
#      main = "Fermat's Spiral", sub="20 subparts of equal length")
# 
# for (i in seq(0.05, 0.95, by=0.05)) {
#     v <- fParam(i*b); fv <- f(v)
#     points(fv[1], f(v)[2], col="darkred", pch=20)
# } ## End(Not run)

Run the code above in your browser using DataLab