roc function.
By default, the total AUC is computed, but a portion of the ROC curve
can be specified with partial.auc.auc(...)
## S3 method for class 'roc':
auc(roc, partial.auc=FALSE, partial.auc.focus=c("specificity",
"sensitivity"), partial.auc.correct=FALSE, ...)
## S3 method for class 'smooth.roc':
auc(smooth.roc, ...)
## S3 method for class 'formula':
auc(formula, data, ...)
## S3 method for class 'default':
auc(response, predictor, ...)roc function, or a smooth.roc function.roc function.roc function.FALSE (default: consider total area) or a
numeric vector of length 2: boundaries of the AUC to consider in
[0,1] (or [0,100] if percent is TRUE).partial.auc is not FALSE and a partial
AUC is computed, specifies if partial.auc specifies the bounds in
terms of specificity (default) or sensitivity. Can be shortened to spec/sens
or even sp/se. Ignopartial.auc
defined. Ignored if partial.auc=FALSE. Default: FALSE<roc when calling
auc.default or auc.formula. Note that the auc
argument of percent=TRUE, with the following attributes:roc when auc=TRUE
(default). It is also used by ci. When it is called with
two vectors (response, predictor) or a formula (response~predictor)
arguments, the roc function is called and only the AUC is
returned. By default, the total area under the curve is computed, but you can
specify a partial AUC with the partial.auc argument. It specifies the bounds of
specificity or sensitivity (depending on partial.auc.focus) between
which the AUC will be computed. As it specifies specificities or
sensitivities, you must adapt it accordingly to the 'percent'
specification (see details in roc).
partial.auc.focus is ignored if
partial.auc=FALSE (default). If a partial AUC is computed,
partial.auc.focus specifies if the bounds specified in
partial.auc must be interpreted as sensitivity or
specificity. Any other value will produce an error.
partial.auc.correct is ignored if partial.auc=FALSE (default). If TRUE,
the correction by McClish will be applied:
$$\frac{1+\frac{auc-min}{max-min}}{2}$$
where min is the value of the non-discriminant AUC in the region and max
is the maximum possible AUC in the region. With this correction, the AUC
will be 0.5 if non discriminant and 1.0 if maximal, whatever the region
defined. Fully compatible with percent.
There is no difference in the computation of the area under a smoothed ROC curve.
Donna Katzman McClish (1989) ``Analyzing a Portion of the ROC Curve''. Medical Decision Making 9(3), 190--195. DOI: 10.1177/0272989X8900900307
roc, ci.aucdata(aSAH)
# Syntax (response, predictor):
auc(aSAH$outcome, aSAH$s100b)
# With a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
# Full AUC:
auc(rocobj)
# Partial AUC:
auc(rocobj, partial.auc=c(1, .8), partial.auc.focus="se", partial.auc.correct=TRUE)
# Alternatively, you can get the AUC directly from roc():
roc(aSAH$outcome, aSAH$s100b)$auc
roc(aSAH$outcome, aSAH$s100b,
partial.auc=c(1, .8), partial.auc.focus="se",
partial.auc.correct=TRUE)$aucRun the code above in your browser using DataLab