# Ben Goodrich

#### 15 packages on CRAN

This package estimates factor analysis models using a genetic algorithm, which permits a general mechanism for restricted optimization with arbitrary restrictions that are chosen at run time with the help of a GUI. Importantly, inequality restrictions can be imposed on functions of multiple parameters, which provides a new avenues for testing and generating theories with factor analysis models. This package also includes an entirely new estimator of the common factor analysis model called semi-exploratory factor analysis, which is a general alternative to exploratory and confirmatory factor analysis. Finally, this package integrates a lot of other packages that estimate sample covariance matrices and thus provides a lot of alternatives to the traditional sample covariance calculation. Note that you need to have the Gtk run time library installed on your system to use this package; see the URL below for detailed installation instructions. Most users would only need to understand the first twenty-four pages of the PDF manual.

The mi package provides functions for data manipulation, imputing missing values in an approximate Bayesian framework, diagnostics of the models used to generate the imputations, confidence-building mechanisms to validate some of the assumptions of the imputation algorithm, and functions to analyze multiply imputed data sets with the appropriate degree of sampling uncertainty.

This GUI for the mi package walks the user through the steps of multiple imputation and the analysis of completed data.

User-facing R functions are provided to parse, compile, test, estimate, and analyze Stan models by accessing the header-only Stan library provided by the 'StanHeaders' package. The Stan project develops a probabilistic programming language that implements full Bayesian statistical inference via Markov Chain Monte Carlo, rough Bayesian inference via 'variational' approximation, and (optionally penalized) maximum likelihood estimation via optimization. In all three cases, automatic differentiation is used to quickly and accurately evaluate gradients without burdening the user with the need to derive the partial derivatives.

Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.

The C++ header files of the Stan project are provided by this package, but it contains little R code or documentation. The main reference is the vignette. There is a shared object containing part of the 'CVODES' library, but its functionality is not accessible from R. 'StanHeaders' is only useful for developers who want to utilize the 'LinkingTo' directive of their package's DESCRIPTION file to build on the Stan library without incurring unnecessary dependencies. The Stan project develops a probabilistic programming language that implements full or approximate Bayesian statistical inference via Markov Chain Monte Carlo or 'variational' methods and implements (optionally penalized) maximum likelihood estimation via optimization. The Stan library includes an advanced automatic differentiation scheme, 'templated' statistical and linear algebra functions that can handle the automatically 'differentiable' scalar types (and doubles, 'ints', etc.), and a parser for the Stan language. The 'rstan' package provides user-facing R functions to parse, compile, test, estimate, and analyze Stan models.

Fit a variety of Bayesian latent variable models, including confirmatory factor analysis, structural equation models, and latent growth curve models.

Provides functions for estimating marginal likelihoods, Bayes factors, posterior model probabilities, and normalizing constants in general, via different versions of bridge sampling (Meng & Wong, 1996, <http://www3.stat.sinica.edu.tw/statistica/j6n4/j6n43/j6n43.htm>). Gronau, Singmann, & Wagenmakers (2020) <doi:10.18637/jss.v092.i10>.

Offers item-response theory (IRT) ideal-point estimation for binary, ordinal, counts and continuous responses with time-varying and missing-data inference. Full and approximate Bayesian sampling with 'Stan' (<https://mc-stan.org/>).

Efficient approximate leave-one-out cross-validation (LOO) for Bayesian models fit using Markov chain Monte Carlo, as described in Vehtari, Gelman, and Gabry (2017) <doi:10.1007/s11222-016-9696-4>. The approximation uses Pareto smoothed importance sampling (PSIS), a new procedure for regularizing importance weights. As a byproduct of the calculations, we also obtain approximate standard errors for estimated predictive errors and for the comparison of predictive errors between models. The package also provides methods for using stacking and other model weighting techniques to average Bayesian predictive distributions.

Contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library Version 1.0.3. All models return 'coda' mcmc objects that can then be summarized using the 'coda' package. Some useful utility functions such as density functions, pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization are provided.

Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the 'RxODE' package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).

A Bayesian companion to the 'rms' package, 'rmsb' provides Bayesian model fitting, post-fit estimation, and graphics. It implements Bayesian regression models whose fit objects can be processed by 'rms' functions such as 'contrast()', 'summary()', 'Predict()', 'nomogram()', and 'latex()'. The fitting function currently implemented in the package is 'blrm()' for Bayesian logistic binary and ordinal regression with optional clustering, censoring, and departures from the proportional odds assumption using the partial proportional odds model of Peterson and Harrell (1990) <doi:10.2307/2347760>.

Provides various tools for developers of R packages interfacing with 'Stan' <https://mc-stan.org>, including functions to set up the required package structure, S3 generics and default methods to unify function naming across 'Stan'-based R packages, and vignettes with recommendations for developers.

A graphical user interface for interactive Markov chain Monte Carlo (MCMC) diagnostics and plots and tables helpful for analyzing a posterior sample. The interface is powered by the 'Shiny' web application framework from 'RStudio' and works with the output of MCMC programs written in any programming language (and has extended functionality for 'Stan' models fit using the 'rstan' and 'rstanarm' packages).