Gerta R<c3><bc>cker

Gerta Rcker

3 packages on CRAN

diagmeta

cran
99.99th

Percentile

Provides methods by Steinhauser et al. (2016) <DOI:10.1186/s12874-016-0196-1> for meta-analysis of diagnostic accuracy studies with several cutpoints.

metasens

cran
99.99th

Percentile

The following methods are implemented to evaluate how sensitive the results of a meta-analysis are to potential bias in meta-analysis and to support Schwarzer et al. (2015) <DOI:10.1007/978-3-319-21416-0>, Chapter 5 'Small-Study Effects in Meta-Analysis': - Copas selection model described in Copas & Shi (2001) <DOI:10.1177/096228020101000402>; - limit meta-analysis by R<c3><bc>cker et al. (2011) <DOI:10.1093/biostatistics/kxq046>; - upper bound for outcome reporting bias by Copas & Jackson (2004) <DOI:10.1111/j.0006-341X.2004.00161.x>; - imputation methods for missing binary data by Gamble & Hollis (2005) <DOI:10.1016/j.jclinepi.2004.09.013> and Higgins et al. (2008) <DOI:10.1177/1740774508091600>.

netmeta

cran
99.99th

Percentile

A comprehensive set of functions providing frequentist methods for network meta-analysis and supporting Schwarzer et al. (2015) <DOI:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis": - frequentist network meta-analysis following R<c3><bc>cker (2012) <DOI:10.1002/jrsm.1058>; - net heat plot and design-based decomposition of Cochran's Q according to Krahn et al. (2013) <DOI:10.1186/1471-2288-13-35>; - measures characterizing the flow of evidence between two treatments by K<c3><b6>nig et al. (2013) <DOI:10.1002/sim.6001>; - ranking of treatments (frequentist analogue of SUCRA) according to R<c3><bc>cker & Schwarzer (2015) <DOI:10.1186/s12874-015-0060-8>; - partial order of treatment rankings ('poset') and Hasse diagram for 'poset' (Carlsen & Bruggemann, 2014) <DOI:10.1002/cem.2569>; (R<c3><bc>cker & Schwarzer, 2017) <DOI:10.1002/jrsm.1270>; - split direct and indirect evidence to check consistency (Dias et al., 2010) <DOI:10.1002/sim.3767>, (Efthimiou et al., 2019) <DOI:10.1002/sim.8158>; - league table with network meta-analysis results; - additive network meta-analysis for combinations of treatments (R<c3><bc>cker et al., 2019) <DOI:10.1002/bimj.201800167>; - network meta-analysis of binary data using the Mantel-Haenszel or non-central hypergeometric distribution method (Efthimiou et al., 2019) <DOI:10.1002/sim.8158>; - 'comparison-adjusted' funnel plot (Chaimani & Salanti, 2012) <DOI:10.1002/jrsm.57>; - automated drawing of network graphs described in R<c3><bc>cker & Schwarzer (2016) <DOI:10.1002/jrsm.1143>.