# Mateusz Staniak

#### 4 packages on CRAN

Kendall random walks are a continuous-space Markov chains generated by the Kendall generalized convolution. This package provides tools for simulating these random walks and studying distributions related to them. For more information about Kendall random walks see Jasiulis-Go<c5><82>dyn (2014) <arXiv:1412.0220>.

Interpretability of complex machine learning models is a growing concern. This package helps to understand key factors that drive the decision made by complicated predictive model (so called black box model). This is achieved through local approximations that are either based on additive regression like model or CART like model that allows for higher interactions. The methodology is based on Tulio Ribeiro, Singh, Guestrin (2016) <doi:10.1145/2939672.2939778>. More details can be found in Staniak, Biecek (2018) <arXiv:1804.01955>.

Local explanations of machine learning models describe, how features contributed to a single prediction. This package implements an explanation method based on LIME (Local Interpretable Model-agnostic Explanations, see Tulio Ribeiro, Singh, Guestrin (2016) <doi:10.1145/2939672.2939778>) in which interpretable inputs are created based on local rather than global behaviour of each original feature.

Provides SHAP explanations of machine learning models. In applied machine learning, there is a strong belief that we need to strike a balance between interpretability and accuracy. However, in field of the Interpretable Machine Learning, there are more and more new ideas for explaining black-box models. One of the best known method for local explanations is SHapley Additive exPlanations (SHAP) introduced by Lundberg, S., et al., (2016) <arXiv:1705.07874> The SHAP method is used to calculate influences of variables on the particular observation. This method is based on Shapley values, a technique used in game theory. The R package 'shapper' is a port of the Python library 'shap'.