Michael Tiefelsdorf

Michael Tiefelsdorf

3 packages on CRAN

TexMix

cran
99.99th

Percentile

A collection of functions and data - mostly from Texas - is provided. These are used as teaching tools for geo-spatial data analytics courses in the GISciences program at The University of Texas at Dallas. In addition, several vignettes illustrate geo-spatial data analytics practices, such as relative risk kernel density estimations based on food store locations within Dallas County or the identification of homogenous and spatially contiguous market areas built on socio-economic, demographic and infrastructure census information. The spatial resolution of the data-sets ranges from 1623 food store locations, over geo-referenced areal data of 258 Texan counties, to 529 census tracts as well as 1669 block groups in Dallas County. Cartographic, specialized regression and data handling functions are provided.

spatialreg

cran
99.99th

Percentile

A collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in 'spdep', 'sphet' and 'spse'. These model fitting functions include maximum likelihood methods for cross-sectional models proposed by 'Cliff' and 'Ord' (1973, ISBN:0850860369) and (1981, ISBN:0850860814), fitting methods initially described by 'Ord' (1975) <doi:10.1080/01621459.1975.10480272>. The models are further described by 'Anselin' (1988) <doi:10.1007/978-94-015-7799-1>. Spatial two stage least squares and spatial general method of moment models initially proposed by 'Kelejian' and 'Prucha' (1998) <doi:10.1023/A:1007707430416> and (1999) <doi:10.1111/1468-2354.00027> are provided. Impact methods and MCMC fitting methods proposed by 'LeSage' and 'Pace' (2009) <doi:10.1201/9781420064254> are implemented for the family of cross-sectional spatial regression models. Methods for fitting the log determinant term in maximum likelihood and MCMC fitting are compared by 'Bivand et al.' (2013) <doi:10.1111/gean.12008>, and model fitting methods by 'Bivand' and 'Piras' (2015) <doi:10.18637/jss.v063.i18>; both of these articles include extensive lists of references. 'spatialreg' >= 1.1-* correspond to 'spdep' >= 1.1-1, in which the model fitting functions are deprecated and pass through to 'spatialreg', but will mask those in 'spatialreg'. From versions 1.2-*, the functions will be made defunct in 'spdep'.

spdep

cran
99.99th

Percentile

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assun<c3><a7><c3><a3>o/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of the measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>. 'spdep' >= 1.1-1 corresponds to 'spatialreg' >= 1.1-1, in which the model fitting functions are deprecated and pass through to 'spatialreg', but will mask those in 'spatialreg'. From versions 1.2-1, the functions will be made defunct in 'spdep'. For now 'spatialreg' only has functions from 'spdep', where they are shown as deprecated. 'spatialreg' only loads the namespace of 'spdep'; if you attach 'spdep', the same functions in the other package will be masked. Some feed through adequately, others do not.