
Mitchell O'Hara-Wild
15 packages on CRAN
2 packages on GitHub
Vectorised distribution objects with tools for manipulating, visualising, and using probability distributions. Designed to allow model prediction outputs to return distributions rather than their parameters, allowing users to directly interact with predictive distributions in a data-oriented workflow. In addition to providing generic replacements for p/d/q/r functions, other useful statistics can be computed including means, variances, intervals, and highest density regions.
Provides diverse datasets in the 'tsibble' data structure. These datasets are useful for learning and demonstrating how tidy temporal data can tidied, visualised, and forecasted.
Provides templates and functions to simplify the production and maintenance of curriculum vitae.
Allows prophet models from the 'prophet' package to be used in a tidy workflow with the modelling interface of 'fabletools'. This extends 'prophet' to provide enhanced model specification and management, performance evaluation methods, and model combination tools.
An extension of 'ggplot2' to provide quiver plots to visualise vector fields. This functionality is implemented using a geom to produce a new graphical layer, which allows aesthetic options. This layer can be overlaid on a map to improve visualisation of mapped data.
Implementation of the FASSTER model for forecasting time series with multiple seasonalities using switching states.
Methods and tools for displaying and analysing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling.
Methods for extracting various features from time series data. The features provided are those from Hyndman, Wang and Laptev (2013) <doi:10.1109/ICDMW.2015.104>, Kang, Hyndman and Smith-Miles (2017) <doi:10.1016/j.ijforecast.2016.09.004> and from Fulcher, Little and Jones (2013) <doi:10.1098/rsif.2013.0048>. Features include spectral entropy, autocorrelations, measures of the strength of seasonality and trend, and so on. Users can also define their own feature functions.
Provides a 'tbl_ts' class (the 'tsibble') for temporal data in an data- and model-oriented format. The 'tsibble' provides tools to easily manipulate and analyse temporal data, such as filling in time gaps and aggregating over calendar periods.
Missing values are ubiquitous in data and need to be explored and handled in the initial stages of analysis. 'naniar' provides data structures and functions that facilitate the plotting of missing values and examination of imputations. This allows missing data dependencies to be explored with minimal deviation from the common work patterns of 'ggplot2' and tidy data. The work is fully discussed at Tierney & Cook (2018) <arXiv:1809.02264>.
The R package *fable* provides methods and tools for displaying and analysing time series forecasts. Data, model and forecast objects are all stored in a tidy format.
The 1001 time series from the M-competition (Makridakis et al. 1982) <DOI:10.1002/for.3980010202> and the 3003 time series from the IJF-M3 competition (Makridakis and Hibon, 2000) <DOI:10.1016/S0169-2070(00)00057-1>.
All data sets required for the examples and exercises in the book "Forecasting: principles and practice" by Rob J Hyndman and George Athanasopoulos <http://OTexts.org/fpp3/>. All packages required to run the examples are also loaded.
Generates time series based on mixture autoregressive models. Kang,Y.,Hyndman,R.,Li,F.(2020)<doi:10.1002/sam.11461>.
A tool to help create shiny apps for selecting and annotating elements of images. Users must supply images, questions, and answer choices. The user interface is a dynamic shiny app, that displays the images and questions and answer choices. The data generated can be saved to a file that can be used for subsequent analysis. The original purpose was to annotate still images from tennis video for face recognition and emotion detection purposes.
Despite that several tests for normality in stationary processes have been proposed in the literature, consistent implementations of these tests in programming languages are limited. Four normality test are implemented. The Lobato and Velasco's, Epps, Psaradakis and Vavra, and the random projections tests for stationary process. Some other diagnostics such as, unit root test for stationarity, seasonal tests for seasonality, and arch effect test for volatility; are also performed. The package also offers residual diagnostic for linear time series models developed in several packages.
Fit Bayesian time series models using 'Stan' for full Bayesian inference. A wide range of distributions and models are supported, allowing users to fit Seasonal ARIMA, ARIMAX, Dynamic Harmonic Regression, GARCH, t-student innovation GARCH models, asymmetric GARCH, Random Walks, stochastic volatility models for univariate time series. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. Model fit can easily be assessed and compared with typical visualization methods, information criteria such as loglik, AIC, BIC WAIC, Bayes factor and leave-one-out cross-validation methods. References: Hyndman (2017) <doi:10.18637/jss.v027.i03>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.