Rainer Opgen-Rhein

Rainer Opgen-Rhein

5 packages on CRAN

ape

cran
99.99th

Percentile

Functions for reading, writing, plotting, and manipulating phylogenetic trees, analyses of comparative data in a phylogenetic framework, ancestral character analyses, analyses of diversification and macroevolution, computing distances from DNA sequences, reading and writing nucleotide sequences as well as importing from BioConductor, and several tools such as Mantel's test, generalized skyline plots, graphical exploration of phylogenetic data (alex, trex, kronoviz), estimation of absolute evolutionary rates and clock-like trees using mean path lengths and penalized likelihood, dating trees with non-contemporaneous sequences, translating DNA into AA sequences, and assessing sequence alignments. Phylogeny estimation can be done with the NJ, BIONJ, ME, MVR, SDM, and triangle methods, and several methods handling incomplete distance matrices (NJ*, BIONJ*, MVR*, and the corresponding triangle method). Some functions call external applications (PhyML, Clustal, T-Coffee, Muscle) whose results are returned into R.

corpcor

cran
99.99th

Percentile

Implements a James-Stein-type shrinkage estimator for the covariance matrix, with separate shrinkage for variances and correlations. The details of the method are explained in Schafer and Strimmer (2005) <DOI:10.2202/1544-6115.1175> and Opgen-Rhein and Strimmer (2007) <DOI:10.2202/1544-6115.1252>. The approach is both computationally as well as statistically very efficient, it is applicable to "small n, large p" data, and always returns a positive definite and well-conditioned covariance matrix. In addition to inferring the covariance matrix the package also provides shrinkage estimators for partial correlations and partial variances. The inverse of the covariance and correlation matrix can be efficiently computed, as well as any arbitrary power of the shrinkage correlation matrix. Furthermore, functions are available for fast singular value decomposition, for computing the pseudoinverse, and for checking the rank and positive definiteness of a matrix.

GeneNet

cran
99.99th

Percentile

Analyzes gene expression (time series) data with focus on the inference of gene networks. In particular, GeneNet implements the methods of Schaefer and Strimmer (2005a,b,c) and Opgen-Rhein and Strimmer (2006, 2007) for learning large-scale gene association networks (including assignment of putative directions).

99.99th

Percentile

Contains general data structures and functions for longitudinal data with multiple variables, repeated measurements, and irregularly spaced time points. Also implements a shrinkage estimator of dynamical correlation and dynamical covariance.

st

cran
99.99th

Percentile

Implements the "shrinkage t" statistic introduced in Opgen-Rhein and Strimmer (2007) and a shrinkage estimate of the "correlation-adjusted t-score" (CAT score) described in Zuber and Strimmer (2009). It also offers a convenient interface to a number of other regularized t-statistics commonly employed in high-dimensional case-control studies.