# Wolfgang Viechtbauer

#### 4 packages on CRAN

Provides 'MathJax' and macros to enable its use within Rd files for rendering equations in the HTML help files.

A comprehensive collection of functions for conducting meta-analyses in R. The package includes functions to calculate various effect sizes or outcome measures, fit fixed-, random-, and mixed-effects models to such data, carry out moderator and meta-regression analyses, and create various types of meta-analytical plots (e.g., forest, funnel, radial, L'Abbe, Baujat, GOSH plots). For meta-analyses of binomial and person-time data, the package also provides functions that implement specialized methods, including the Mantel-Haenszel method, Peto's method, and a variety of suitable generalized linear (mixed-effects) models (i.e., mixed-effects logistic and Poisson regression models). Finally, the package provides functionality for fitting meta-analytic multivariate/multilevel models that account for non-independent sampling errors and/or true effects (e.g., due to the inclusion of multiple treatment studies, multiple endpoints, or other forms of clustering). Network meta-analyses and meta-analyses accounting for known correlation structures (e.g., due to phylogenetic relatedness) can also be conducted.

Computations for approximations and alternatives for the 'DPQ' (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. -- This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve R`s own pbeta(), qgamma(), ..., etc: {'"dpq"'-functions}. -- We plan to complement with 'DPQmpfr' to be suggested later.

Functions for pooling/combining the results (i.e., p-values) from (dependent) hypothesis tests. Included are Fisher's method, Stouffer's method, the inverse chi-square method, the Bonferroni method, Tippett's method, and the binomial test. Each method can be adjusted based on an estimate of the effective number of tests or using empirically derived null distribution using pseudo replicates. For Fisher's, Stouffer's, and the inverse chi-square method, direct generalizations based on multivariate theory are also available (leading to Brown's method, Strube's method, and the generalized inverse chi-square method).