priormatrix=cbind(c(500,3,-2.3,1,-25,-0.7),c(500,5,1.6,1,125,3.2))
sum_stat_obs=c(100,2.5,20,30000)
n=10
nbetweensampling=1
distmax=8
tabnormalization=c(50,1,20,10000)
proposalrange=c(0,1,0.5,0,50,1)
## artificial example to perform the Marjoram et al. (2003)'s method.
##
ABC_Marjoram_original<-ABC_mcmc(method="Marjoram_original", model=trait_model, prior_matrix=priormatrix,
n_obs=n, n_between_sampling=nbetweensampling, summary_stat_target=sum_stat_obs, n_cluster=1, dist_max=distmax,
tab_normalization=tabnormalization, proposal_range=proposalrange)
ABC_Marjoram_original
## artificial example to perform the Marjoram et al. (2003)'s method, with modifications drawn from Wegmann et al. (2009) without Box-Cox and PLS transformations.
##
ncalib=10
tolquantile = 0.5
ABC_Marjoram<-ABC_mcmc(method="Marjoram", model=trait_model, prior_matrix=priormatrix,
n_obs=n, n_between_sampling=nbetweensampling, summary_stat_target=sum_stat_obs, n_cluster=1,
n_calibration=ncalib, tolerance_quantile=tolquantile)
ABC_Marjoram
## artificial example to perform the Wegmann et al. (2009)'s method.
##
ABC_Wegmann<-ABC_mcmc(method="Wegmann", model=trait_model, prior_matrix=priormatrix,
n_obs=n, n_between_sampling=nbetweensampling, summary_stat_target=sum_stat_obs, n_cluster=1,
n_calibration=ncalib, tolerance_quantile=tolquantile)
ABC_Wegmann
Run the code above in your browser using DataLab