Learn R Programming

plsRglm (version 0.7.6)

AICpls: AIC function for plsR models

Description

This function provides AIC computation for an univariate plsR model.

Usage

AICpls(ncomp, residpls, weights=rep.int(1,length(residpls)))

Arguments

ncomp
Number of components
residpls
Residuals of a fitted univariate plsR model
weights
Weights of observations

Value

  • realAIC value

Details

AIC function for plsR models with univariate response.

References

Baibing Li, Julian Morris, Elaine B. Martin, Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems 64 (2002) 79-89. http://dx.doi.org/10.1016/S0169-7439(02)00051-5

See Also

loglikpls for loglikelihood computations for plsR models and AIC for AIC computation for a linear models

Examples

Run this code
data(pine)
ypine <- pine[,11]
Xpine <- pine[,1:10]
(Pinscaled <- as.data.frame(cbind(scale(log(ypine)),scale(as.matrix(Xpine)))))
colnames(Pinscaled)[1] <- "yy"

lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)

modpls <- plsR(log(ypine),Xpine,10)
modpls$Std.Coeffs
lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)

AIC(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled))
print(logLik(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)))

sum(dnorm(modpls$RepY, modpls$Std.ValsPredictY, sqrt(mean(modpls$residY^2)), log=TRUE))
sum(dnorm(Pinscaled$yy,fitted(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)),sqrt(mean(residuals(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled))^2)), log=TRUE))
loglikpls(modpls$residY)
loglikpls(residuals(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)))
AICpls(10,residuals(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)))
AICpls(10,modpls$residY)

Run the code above in your browser using DataLab