Usage
ANFIS.update(data.train, range.input, range.output,
rule.data.num, miu.rule, func.tsk, varinp.mf,
step.size = 0.01)
Arguments
data.train
a matrix(m x n) of data for the
training process, where m is the number of instances and
n is the number of variables; the last column is the
output variable.
range.input
the range of the input variables, as a
matrix(2 x n).
range.output
the range of the output variable, as
a matrix(2 x n).
rule.data.num
a matrix containing the rule base in
integer form.
miu.rule
a matrix with the degrees of rules. See
inference
. func.tsk
a matrix of parameters of the function on
the consequent part using the Takagi Sugeno Kang model.
varinp.mf
a matrix of parameters of membership
functions of the input variables.
step.size
a real number between 0 and 1
representing the step size of the gradient descent.