The ASparameter class holds the mining parameters (e.g., minimum
  support) for the used mining algorithms.  APparameter and
  ECparameter directly extend ASparameter with additional slots
  for parameters only suitable for the Apriori (APparameter) or the
  Eclat algorithms (ECparameter).
A suitable default parameter object will be automatically created by
  the apriori or the eclat function.  By
  specifying a named list (names equal to slots) as parameter
  argument for the apriori or the  eclat
  function, default values can be replaced by the values in the list.
  Objects can be created by calls of the form new("APparameter",
    ...) or new("ECparameter", ...).
Common slots defined in ASparameter:
support:a numeric value for the minimal support of an item set (default: \(0.1\))
minlen:an integer value for the minimal number of items per item set (default: 1 item)
maxlen:an integer value for the maximal number of items per item set (default: 10 items)
target:a character string indicating the type of association mined. One of
"frequent itemsets"
"maximally frequent itemsets"
"closed frequent itemsets"
"rules" (only available for Apriori; 
	     use ruleInduction for eclat.)
"hyperedgesets" (only available for Apriori; 
	see references for the definition of association hyperedgesets)
ext:a logical indicating whether to
      produce extended information on quality measures (e.g.,
      lhs.support) (default: FALSE)
Additional slots for Apriori in APparameter:
confidence:a numeric value for the
      minimal confidence of rules/association hyperedges (default:
      \(0.8\)). For frequent itemsets it is set to NA.
smax:a numeric value for the maximal support of itemsets/rules/hyperedgesets (default: 1)
arem:a character string indicating the used
      additional rule evaluation measure (default: "none") given 
        by one of
      
"none":no additional evaluation measure
"diff":absolute confidence difference
"quot":difference of confidence quotient to 1
"aimp":absolute difference of improvement to 1
"info":information difference to prior
"chi2":normalized \(\chi^2\) measure
aval:a logical indicating whether to
      return the additional rule evaluation measure selected with
      arem.
minval:a numeric value for the
      minimal value of additional evaluation measure selected with
      arem (default: \(0.1\))
originalSupport:a logical indicating whether to
      use for minimum support the original definition of the support of
      a rule (lhs and rhs) instead of lhs support.  Make sure to use
      ext = TRUE if originalSupport is set to FALSE
      (default: TRUE)
maxtime:Time limit in seconds for checking subsets. 
    maxtime=0 disables the time limit.  
      (default: 5 seconds)
Additional slots for Eclat in ECparameter:
tidLists:a logical indicating whether to
      return also a list of supporting transactions (transaction IDs)
      (default: FALSE)
signature(from = "NULL", to = "APparameter")
signature(from = "list", to = "APparameter")
signature(from = "NULL", to = "ECparameter")
signature(from = "list", to = "ECparameter")
signature(object = "ASparameter")
Christian Borgelt (2004) Apriori --- Finding Association Rules/Hyperedges with the Apriori Algorithm. www.borgelt.net/apriori.html
apriori,
  eclat,
  weclat (for weighted rule mining),
  ruleInduction