Object
~~|
~~+--
ParametersInterface
~~~~~~~|
~~~~~~~+--
Model
~~~~~~~~~~~~|
~~~~~~~~~~~~+--
UnitModel
~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~+--
MultiArrayUnitModel
~~~~~~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~~~~~~+--
ProbeLevelModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~~~~~~~~~~~+--
AffinePlm
Directly known subclasses:
AffineCnPlm, AffineSnpPlm
public abstract static class AffinePlm
extends ProbeLevelModel
This class represents affine model in Bengtsson & Hossjer (2006).AffinePlm(..., background=TRUE)
ProbeLevelModel
.getProbeAffinityFile
-
}Methods inherited from ProbeLevelModel: calculateResidualSet, calculateWeights, fit, getAsteriskTags, getCalculateResidualsFunction, getChipEffectSet, getProbeAffinityFile, getResidualSet, getRootPath, getWeightsSet
Methods inherited from MultiArrayUnitModel: getListOfPriors, setListOfPriors, validate
Methods inherited from UnitModel: findUnitsTodo, getAsteriskTags, getFitSingleCellUnitFunction, getParameters
Methods inherited from Model: as.character, fit, getAlias, getAsteriskTags, getDataSet, getFullName, getName, getPath, getRootPath, getTags, setAlias, setTags
Methods inherited from ParametersInterface: getParameterSets, getParameters, getParametersAsString
Methods inherited from Object: $, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach, equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstantiationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save, asThis
$$y_{ik} = a + \theta_i \phi_k + \varepsilon_{ik}$$
where $a$ is an offset common to all probe signals, $\theta_i$ are the chip effects for arrays $i=1,...,I$, and $\phi_k$ are the probe affinities for probes $k=1,...,K$. The $\varepsilon_{ik}$ are zero-mean noise with equal variance. The model is constrained such that $\prod_k \phi_k = 1$.
Note that with the additional constraint $a=0$ (see arguments above),
the above model is very similar to MbeiPlm
. The differences in
parameter estimates is due to difference is assumptions about the
error structure, which in turn affects how the model is estimated.