# NOT RUN {
Output <- RemixAutoML::AutoCatBoostHurdleModel(
# Operationalization
task_type = 'GPU',
ModelID = 'ModelTest',
SaveModelObjects = FALSE,
ReturnModelObjects = TRUE,
# Data related args
data = data,
WeightsColumnName = NULL,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
Buckets = 0L,
TargetColumnName = NULL,
FeatureColNames = NULL,
PrimaryDateColumn = NULL,
IDcols = NULL,
DebugMode = FALSE,
# Metadata args
Paths = normalizePath('./'),
MetaDataPaths = NULL,
TransformNumericColumns = NULL,
Methods =
c('BoxCox', 'Asinh', 'Asin', 'Log',
'LogPlus1', 'Logit', 'YeoJohnson'),
ClassWeights = NULL,
SplitRatios = c(0.70, 0.20, 0.10),
NumOfParDepPlots = 10L,
# Grid tuning setup
PassInGrid = NULL,
GridTune = FALSE,
BaselineComparison = 'default',
MaxModelsInGrid = 1L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 60L*60L,
MetricPeriods = 25L,
# Bandit grid args
Langevin = FALSE,
DiffusionTemperature = 10000,
Trees = list('classifier' = seq(1000,2000,100),
'regression' = seq(1000,2000,100)),
Depth = list('classifier' = seq(6,10,1),
'regression' = seq(6,10,1)),
RandomStrength = list('classifier' = seq(1,10,1),
'regression' = seq(1,10,1)),
BorderCount = list('classifier' = seq(32,256,16),
'regression' = seq(32,256,16)),
LearningRate = list('classifier' = seq(0.01,0.25,0.01),
'regression' = seq(0.01,0.25,0.01)),
L2_Leaf_Reg = list('classifier' = seq(3.0,10.0,1.0),
'regression' = seq(1.0,10.0,1.0)),
RSM = list('classifier' = c(0.80, 0.85, 0.90, 0.95, 1.0),
'regression' = c(0.80, 0.85, 0.90, 0.95, 1.0)),
BootStrapType = list('classifier' = c('Bayesian', 'Bernoulli', 'Poisson', 'MVS', 'No'),
'regression' = c('Bayesian', 'Bernoulli', 'Poisson', 'MVS', 'No')),
GrowPolicy = list('classifier' = c('SymmetricTree', 'Depthwise', 'Lossguide'),
'regression' = c('SymmetricTree', 'Depthwise', 'Lossguide')))
# }
Run the code above in your browser using DataLab