# NOT RUN {
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
Correlation = 0.85,
N = 10000L,
ID = 2L,
ZIP = 0L,
AddDate = FALSE,
Classification = FALSE,
MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoCatBoostMultiClass(
# GPU or CPU and the number of available GPUs
task_type = "GPU",
NumGPUs = 1,
# Metadata args
ModelID = "Test_Model_1",
model_path = normalizePath("./"),
metadata_path = normalizePath("./"),
SaveModelObjects = FALSE,
ReturnModelObjects = TRUE,
# Data args
data = data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %in%
c("IDcol_1", "IDcol_2","Adrian")],
PrimaryDateColumn = NULL,
ClassWeights = c(1L,1L,1L,1L,1L),
IDcols = c("IDcol_1","IDcol_2"),
# Model evaluation
eval_metric = "MCC",
loss_function = "MultiClassOneVsAll",
grid_eval_metric = "Accuracy",
MetricPeriods = 10L,
# Grid tuning args
PassInGrid = NULL,
GridTune = TRUE,
MaxModelsInGrid = 30L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 24L*60L,
Shuffles = 4L,
BaselineComparison = "default",
# ML args
langevin = FALSE,
diffusion_temperature = 10000,
Trees = seq(100L, 500L, 50L),
Depth = seq(4L, 8L, 1L),
LearningRate = seq(0.01,0.10,0.01),
L2_Leaf_Reg = seq(1.0, 10.0, 1.0),
RandomStrength = 1,
BorderCount = 254,
RSM = c(0.80, 0.85, 0.90, 0.95, 1.0),
BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide"),
model_size_reg = 0.5,
feature_border_type = "GreedyLogSum",
sampling_unit = "Group",
subsample = NULL,
score_function = "Cosine",
min_data_in_leaf = 1)
# Output
TestModel$Model
TestModel$ValidationData
TestModel$EvaluationMetrics
TestModel$Evaluation
TestModel$VI_Plot
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$GridMetrics
TestModel$ColNames = Names
TestModel$TargetLevels
# }
Run the code above in your browser using DataLab