# NOT RUN {
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
Correlation = 0.85,
N = 10000,
ID = 2,
ZIP = 0,
AddDate = FALSE,
Classification = FALSE,
MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoCatBoostRegression(
# GPU or CPU and the number of available GPUs
TrainOnFull = FALSE,
task_type = 'GPU',
NumGPUs = 1,
DebugMode = FALSE,
# Metadata args
OutputSelection = c('Importances', 'EvalPlots', 'EvalMetrics', 'Score_TrainData'),
ModelID = 'Test_Model_1',
model_path = normalizePath('./'),
metadata_path = normalizePath('./'),
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
ReturnModelObjects = TRUE,
# Data args
data = data,
ValidationData = NULL,
TestData = NULL,
Weights = NULL,
TargetColumnName = 'Adrian',
FeatureColNames = names(data)[!names(data) %in%
c('IDcol_1', 'IDcol_2','Adrian')],
PrimaryDateColumn = NULL,
WeightsColumnName = NULL,
IDcols = c('IDcol_1','IDcol_2'),
TransformNumericColumns = 'Adrian',
Methods = c('BoxCox', 'Asinh', 'Asin', 'Log',
'LogPlus1', 'Sqrt', 'Logit'),
# Model evaluation
eval_metric = 'RMSE',
eval_metric_value = 1.5,
loss_function = 'RMSE',
loss_function_value = 1.5,
MetricPeriods = 10L,
NumOfParDepPlots = ncol(data)-1L-2L,
# Grid tuning args
PassInGrid = NULL,
GridTune = FALSE,
MaxModelsInGrid = 30L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 60*60,
BaselineComparison = 'default',
# ML args
langevin = FALSE,
diffusion_temperature = 10000,
Trees = 1000,
Depth = 9,
L2_Leaf_Reg = NULL,
RandomStrength = 1,
BorderCount = 128,
LearningRate = NULL,
RSM = 1,
BootStrapType = NULL,
GrowPolicy = 'SymmetricTree',
model_size_reg = 0.5,
feature_border_type = 'GreedyLogSum',
sampling_unit = 'Object',
subsample = NULL,
score_function = 'Cosine',
min_data_in_leaf = 1)
# Output
TestModel$Model
TestModel$TrainData
TestModel$TestData
TestModel$PlotList
TestModel$EvaluationMetrics
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$GridList
TestModel$ColNames
TestModel$TransformationResults
TestModel$FactorLevelsList
# }
Run the code above in your browser using DataLab