Last chance! 50% off unlimited learning
Sale ends in
This function will take your ratings matrix and model and score your data in parallel.
This function will take your ratings matrix and model and score your data in parallel.
AutoRecommenderScoring(
data,
WinningModel,
EntityColName = "CustomerID",
ProductColName = "StockCode",
NumItemsReturn = 1
)AutoRecommenderScoring(
data,
WinningModel,
EntityColName = "CustomerID",
ProductColName = "StockCode",
NumItemsReturn = 1
)
The binary ratings matrix from RecomDataCreate()
The winning model returned from AutoRecommender()
Typically your customer ID
Something like "StockCode"
Number of items to return on scoring
Returns the prediction data
Returns the prediction data
Other Recommenders:
AutoMarketBasketModel()
,
AutoRecomDataCreate()
,
AutoRecommender()
Other Recommenders:
AutoMarketBasketModel()
,
AutoRecomDataCreate()
,
AutoRecommender()
# NOT RUN {
Results <- AutoRecommenderScoring(
data = AutoRecomDataCreate(
data,
EntityColName = "CustomerID",
ProductColName = "StockCode",
MetricColName = "TotalSales"),
WinningModel = AutoRecommender(
AutoRecomDataCreate(
data,
EntityColName = "CustomerID",
ProductColName = "StockCode",
MetricColName = "TotalSales"),
Partition = "Split",
KFolds = 2,
Ratio = 0.75,
RatingType = "TopN",
RatingsKeep = 20,
SkipModels = "AssociationRules",
ModelMetric = "TPR"),
EntityColName = "CustomerID",
ProductColName = "StockCode")
# }
# NOT RUN {
Results <- AutoRecommenderScoring(
data = AutoRecomDataCreate(
data,
EntityColName = "CustomerID",
ProductColName = "StockCode",
MetricColName = "TotalSales"),
WinningModel = AutoRecommender(
AutoRecomDataCreate(
data,
EntityColName = "CustomerID",
ProductColName = "StockCode",
MetricColName = "TotalSales"),
Partition = "Split",
KFolds = 2,
Ratio = 0.75,
RatingType = "TopN",
RatingsKeep = 20,
SkipModels = "AssociationRules",
ModelMetric = "TPR"),
EntityColName = "CustomerID",
ProductColName = "StockCode")
# }
Run the code above in your browser using DataLab