# NOT RUN {
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
Correlation = 0.85,
N = 1000,
ID = 2,
ZIP = 0,
AddDate = FALSE,
Classification = FALSE,
MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoXGBoostRegression(
# GPU or CPU
TreeMethod = "hist",
NThreads = parallel::detectCores(),
LossFunction = 'reg:squarederror',
# Metadata args
model_path = normalizePath("./"),
metadata_path = NULL,
ModelID = "Test_Model_1",
ReturnFactorLevels = TRUE,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
# Data args
data = data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %in%
c("IDcol_1", "IDcol_2","Adrian")],
IDcols = c("IDcol_1","IDcol_2"),
TransformNumericColumns = NULL,
Methods = c("BoxCox", "Asinh", "Asin", "Log",
"LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
# Model evaluation args
eval_metric = "rmse",
NumOfParDepPlots = 3L,
# Grid tuning args
PassInGrid = NULL,
GridTune = FALSE,
grid_eval_metric = "mse",
BaselineComparison = "default",
MaxModelsInGrid = 10L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 24L*60L,
Verbose = 1L,
# ML args
Shuffles = 1L,
Trees = 50L,
eta = 0.05,
max_depth = 4L,
min_child_weight = 1.0,
subsample = 0.55,
colsample_bytree = 0.55)
# }
Run the code above in your browser using DataLab