Object
~~|
~~+--
ParametersInterface
~~~~~~~|
~~~~~~~+--
Model
~~~~~~~~~~~~|
~~~~~~~~~~~~+--
UnitModel
~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~+--
MultiArrayUnitModel
~~~~~~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~~~~~~+--
ProbeLevelModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~~~~~~~~~~~+--
AvgPlm
Directly known subclasses:
AvgCnPlm, AvgSnpPlm
public abstract static class AvgPlm
extends ProbeLevelModel
This class represents a PLM where the probe intensities are averaged
assuming identical probe affinities.
For instance, one may assume that replicated probes with identical
sequences have the same probe affinities, cf. the GenomeWideSNP_6
chip type.AvgPlm(..., flavor=c("median", "mean"))
ProbeLevelModel
.character
string specifying what model fitting algorithm
to be used. This makes it possible to get identical estimates as other
packages.Methods inherited from ProbeLevelModel: calculateResidualSet, calculateWeights, fit, getAsteriskTags, getCalculateResidualsFunction, getChipEffectSet, getProbeAffinityFile, getResidualSet, getRootPath, getWeightsSet
Methods inherited from MultiArrayUnitModel: getListOfPriors, setListOfPriors, validate
Methods inherited from UnitModel: findUnitsTodo, getAsteriskTags, getFitSingleCellUnitFunction, getParameters
Methods inherited from Model: as.character, fit, getAlias, getAsteriskTags, getDataSet, getFullName, getName, getPath, getRootPath, getTags, setAlias, setTags
Methods inherited from ParametersInterface: getParameterSets, getParameters, getParametersAsString
Methods inherited from Object: $, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach, equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstantiationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save, asThis
$$y_{ik} = \theta_i + \varepsilon_{ik}$$
where $\theta_i$ are the chip effects for arrays $i=1,...,I$. The $\varepsilon_{ik}$ are zero-mean noise with equal variance.
flavor="mean"
to fit the model non-robustly, i.e.$$\hat{\theta}_{i} = 1/K \sum_k y_{ik}$$.
Use argument flavor="median"
to fit the model robustly, i.e.
$$\hat{\theta}_{i} = median_k y_{ik}$$.
Missing values are always excluded.