Learn R Programming

tidychangepoint (version 1.0.0)

as.ts.mod_cpt: Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

broom

augment, glance, tidy

stats

AIC, as.ts, BIC, coef, fitted, logLik, nobs, residuals, time

vctrs

vec_cast, vec_ptype2

zoo

index

Usage

# S3 method for mod_cpt
as.ts(x, ...)

# S3 method for mod_cpt nobs(object, ...)

# S3 method for mod_cpt logLik(object, ...)

# S3 method for mod_cpt fitted(object, ...)

# S3 method for mod_cpt residuals(object, ...)

# S3 method for mod_cpt coef(object, ...)

# S3 method for mod_cpt augment(x, ...)

# S3 method for mod_cpt tidy(x, ...)

# S3 method for mod_cpt glance(x, ...)

# S3 method for mod_cpt plot(x, ...)

# S3 method for mod_cpt print(x, ...)

# S3 method for seg_basket as.ts(x, ...)

# S3 method for seg_basket plot(x, ...)

# S3 method for seg_cpt as.ts(x, ...)

# S3 method for seg_cpt glance(x, ...)

# S3 method for seg_cpt nobs(object, ...)

# S3 method for seg_cpt print(x, ...)

# S3 method for tidycpt as.ts(x, ...)

# S3 method for tidycpt augment(x, ...)

# S3 method for tidycpt tidy(x, ...)

# S3 method for tidycpt glance(x, ...)

# S3 method for tidycpt plot(x, use_time_index = FALSE, ...)

# S3 method for tidycpt print(x, ...)

# S3 method for meanshift_lnorm logLik(object, ...)

# S3 method for nhpp logLik(object, ...)

# S3 method for nhpp glance(x, ...)

# S3 method for ga as.ts(x, ...)

# S3 method for ga nobs(object, ...)

# S3 method for cpt as.ts(x, ...)

# S3 method for cpt logLik(object, ...)

# S3 method for cpt nobs(object, ...)

# S3 method for wbs as.ts(x, ...)

# S3 method for wbs nobs(object, ...)

Arguments

...

some methods for this generic function require additional arguments.

object

any object from which a log-likelihood value, or a contribution to a log-likelihood value, can be extracted.

use_time_index

Should the x-axis labels be the time indices? Or the time labels?

Examples

Run this code
# Plot a meanshift model fit
plot(fit_meanshift_norm(CET, tau = 330))

#' # Plot a trendshift model fit
plot(fit_trendshift(CET, tau = 330))

#' # Plot a quadratic polynomial model fit
plot(fit_lmshift(CET, tau = 330, deg_poly = 2))

#' # Plot a 4th degree polynomial model fit
plot(fit_lmshift(CET, tau = 330, deg_poly = 10))

# Plot a segmented time series
plot(segment(CET, method = "pelt"))

# Plot a segmented time series and show the time labels on the x-axis
plot(segment(CET, method = "pelt"), use_time_index = TRUE)

Run the code above in your browser using DataLab