Learn R Programming

⚠️There's a newer version (0.22.0) of this package.Take me there.

parameters

Describe and understand your model’s parameters!

parameters’ primary goal is to provide utilities for processing the parameters of various statistical models (see here for a list of supported models). Beyond computing p-values, CIs, Bayesian indices and other measures for a wide variety of models, this package implements features like bootstrapping of parameters and models, feature reduction (feature extraction and variable selection).

Installation

Run the following:

install.packages("parameters")
library("parameters")

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Contributing and Support

In case you want to file an issue or contribute in another way to the package, please follow this guide. For questions about the functionality, you may either contact us via email or also file an issue.

Features

Model’s parameters description

The model_parameters() function (that can be accessed via the parameters() shortcut) allows you to extract the parameters and their characteristics from various models in a consistent way. It can be considered as a lightweight alternative to broom::tidy(), with some notable differences:

  • The column names of the returned data frame are specific to their content. For instance, the column containing the statistic is named following the statistic name, i.e., t, z, etc., instead of a generic name such as statistic (however, you can get standardized (generic) column names using standardize_names()).
  • It is able to compute or extract indices not available by default, such as p-values, CIs, etc.
  • It includes feature engineering capabilities, including parameters bootstrapping.

Classical Regression Models

model <- lm(Sepal.Width ~ Petal.Length * Species + Petal.Width, data = iris)

# regular model parameters
model_parameters(model)
#> Parameter                           | Coefficient |   SE |         95% CI |     t |  df |      p
#> ------------------------------------------------------------------------------------------------
#> (Intercept)                         |        2.89 | 0.36 | [ 2.18,  3.60] |  8.01 | 143 | < .001
#> Petal.Length                        |        0.26 | 0.25 | [-0.22,  0.75] |  1.07 | 143 | 0.287 
#> Species [versicolor]                |       -1.66 | 0.53 | [-2.71, -0.62] | -3.14 | 143 | 0.002 
#> Species [virginica]                 |       -1.92 | 0.59 | [-3.08, -0.76] | -3.28 | 143 | 0.001 
#> Petal.Width                         |        0.62 | 0.14 | [ 0.34,  0.89] |  4.41 | 143 | < .001
#> Petal.Length * Species [versicolor] |       -0.09 | 0.26 | [-0.61,  0.42] | -0.36 | 143 | 0.721 
#> Petal.Length * Species [virginica]  |       -0.13 | 0.26 | [-0.64,  0.38] | -0.50 | 143 | 0.618

# standardized parameters
model_parameters(model, standardize = "refit")
#> Parameter                           | Coefficient |   SE |         95% CI |     t |  df |      p
#> ------------------------------------------------------------------------------------------------
#> (Intercept)                         |        3.59 | 1.30 | [ 1.01,  6.17] |  2.75 | 143 | 0.007 
#> Petal.Length                        |        1.07 | 1.00 | [-0.91,  3.04] |  1.07 | 143 | 0.287 
#> Species [versicolor]                |       -4.62 | 1.31 | [-7.21, -2.03] | -3.53 | 143 | < .001
#> Species [virginica]                 |       -5.51 | 1.38 | [-8.23, -2.79] | -4.00 | 143 | < .001
#> Petal.Width                         |        1.08 | 0.24 | [ 0.59,  1.56] |  4.41 | 143 | < .001
#> Petal.Length * Species [versicolor] |       -0.38 | 1.06 | [-2.48,  1.72] | -0.36 | 143 | 0.721 
#> Petal.Length * Species [virginica]  |       -0.52 | 1.04 | [-2.58,  1.54] | -0.50 | 143 | 0.618

Mixed Models

library(lme4)

model <- lmer(Sepal.Width ~ Petal.Length + (1|Species), data = iris)

# model parameters with CI, df and p-values based on Wald approximation
model_parameters(model)
#> Parameter    | Coefficient |   SE |       95% CI |    t |  df |      p
#> ----------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.56 | [0.90, 3.10] | 3.56 | 146 | < .001
#> Petal.Length |        0.28 | 0.06 | [0.17, 0.40] | 4.75 | 146 | < .001

# model parameters with CI, df and p-values based on Kenward-Roger approximation
model_parameters(model, df_method = "kenward")
#> Parameter    | Coefficient |   SE |       95% CI |    t |     df |      p
#> -------------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.57 | [0.07, 3.93] | 3.53 |   2.67 | 0.046 
#> Petal.Length |        0.28 | 0.06 | [0.16, 0.40] | 4.58 | 140.98 | < .001

Structural Models

Besides many types of regression models and packages, it also works for other types of models, such as structural models (EFA, CFA, SEM…).

library(psych)

model <- psych::fa(attitude, nfactors = 3)
model_parameters(model)
#> # Rotated loadings from Factor Analysis (oblimin-rotation)
#> 
#> Variable   |   MR1 |   MR2 |   MR3 | Complexity | Uniqueness
#> ------------------------------------------------------------
#> rating     |  0.90 | -0.07 | -0.05 |       1.02 |       0.23
#> complaints |  0.97 | -0.06 |  0.04 |       1.01 |       0.10
#> privileges |  0.44 |  0.25 | -0.05 |       1.64 |       0.65
#> learning   |  0.47 |  0.54 | -0.28 |       2.51 |       0.24
#> raises     |  0.55 |  0.43 |  0.25 |       2.35 |       0.23
#> critical   |  0.16 |  0.17 |  0.48 |       1.46 |       0.67
#> advance    | -0.11 |  0.91 |  0.07 |       1.04 |       0.22
#> 
#> The 3 latent factors (oblimin rotation) accounted for 66.60% of the total variance of the original data (MR1 = 38.19%, MR2 = 22.69%, MR3 = 5.72%).

Variable and parameters selection

select_parameters() can help you quickly select and retain the most relevant predictors using methods tailored for the model type.

library(dplyr)

lm(disp ~ ., data = mtcars) %>% 
  select_parameters() %>% 
  model_parameters()
#> Parameter   | Coefficient |     SE |            95% CI |     t | df |      p
#> ----------------------------------------------------------------------------
#> (Intercept) |      141.70 | 125.67 | [-116.62, 400.02] |  1.13 | 26 | 0.270 
#> cyl         |       13.14 |   7.90 | [  -3.10,  29.38] |  1.66 | 26 | 0.108 
#> hp          |        0.63 |   0.20 | [   0.22,   1.03] |  3.18 | 26 | 0.004 
#> wt          |       80.45 |  12.22 | [  55.33, 105.57] |  6.58 | 26 | < .001
#> qsec        |      -14.68 |   6.14 | [ -27.31,  -2.05] | -2.39 | 26 | 0.024 
#> carb        |      -28.75 |   5.60 | [ -40.28, -17.23] | -5.13 | 26 | < .001

Miscellaneous

This packages also contains a lot of other useful functions:

Describe a Distribution

data(iris)
describe_distribution(iris)
#> Variable     | Mean |   SD |  IQR |        Range | Skewness | Kurtosis |   n | n_Missing
#> ----------------------------------------------------------------------------------------
#> Sepal.Length | 5.84 | 0.83 | 1.30 | [4.30, 7.90] |     0.31 |    -0.55 | 150 |         0
#> Sepal.Width  | 3.06 | 0.44 | 0.52 | [2.00, 4.40] |     0.32 |     0.23 | 150 |         0
#> Petal.Length | 3.76 | 1.77 | 3.52 | [1.00, 6.90] |    -0.27 |    -1.40 | 150 |         0
#> Petal.Width  | 1.20 | 0.76 | 1.50 | [0.10, 2.50] |    -0.10 |    -1.34 | 150 |         0

Citation

In order to cite this package, please use the following citation:

Corresponding BibTeX entry:

@Article{,
  title = {Describe and understand your model's parameters},
  author = {Daniel Lüdecke and Mattan S. Ben-Shachar and Dominique Makowski},
  journal = {CRAN},
  year = {2019},
  note = {R package},
  url = {https://github.com/easystats/parameters},
}

Copy Link

Version

Install

install.packages('parameters')

Monthly Downloads

93,668

Version

0.8.2

License

GPL-3

Maintainer

Daniel Lüdecke

Last Published

July 24th, 2020

Functions in parameters (0.8.2)

ci.merMod

Confidence Intervals (CI)
check_sphericity

Bartlett's Test of Sphericity
data_partition

Partition data into a test and a training set
degrees_of_freedom

Degrees of Freedom (DoF)
.factor_to_numeric

Safe transformation from factor/character to numeric
.compact_list

remove NULL elements from lists
check_kmo

Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis
.n_factors_sescree

Standard Error Scree and Coefficient of Determination Procedures
.compact_character

remove empty string from character
.n_factors_scree

Non Graphical Cattell's Scree Test
bootstrap_model

Model bootstrapping
check_multimodal

Check if a distribution is unimodal or multimodal
.n_factors_cng

Cattell-Nelson-Gorsuch CNG Indices
format_algorithm

Model Algorithm formatting
factor_analysis

Factor Analysis (FA)
.n_factors_mreg

Multiple Regression Procedure
bootstrap_parameters

Parameters bootstrapping
qol_cancer

Sample data set
equivalence_test.lm

Equivalence test
print

Print model parameters
.recode_to_zero

Recode a variable so its lowest value is beginning with zero
cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups
.data_frame

help-functions
.factor_to_dummy

Safe transformation from factor/character to numeric
fish

Sample data set
model_parameters.lavaan

Parameters from CFA/SEM models
standard_error

Standard Errors
convert_data_to_numeric

Convert data to numeric
model_parameters.Mclust

Parameters from Mixture Models
check_heterogeneity

Compute group-meaned and de-meaned variables
model_parameters

Model Parameters
n_factors

Number of components/factors to retain in PCA/FA
ci_wald

Wald-test approximation for CIs and p-values
n_clusters

Number of clusters to extract
model_parameters.kmeans

Parameters from Cluster Models (k-means, ...)
simulate_parameters

Simulate Model Parameters
model_parameters.rma

Parameters from Meta-Analysis
format_model

Model Name formatting
model_parameters.logitor

Parameters from (General) Linear Models
model_parameters.PCA

Parameters from Structural Models (PCA, EFA, ...)
model_parameters.gam

Parameters from Generalized Additive (Mixed) Models
parameters_table

Parameter table formatting
model_parameters.stanreg

Parameters from Bayesian Models
model_parameters.zeroinfl

Parameters from Zero-Inflated Models
simulate_model

Simulated draws from model coefficients
smoothness

Quantify the smoothness of a vector
skewness

Compute Skewness and Kurtosis
principal_components

Principal Component Analysis (PCA)
parameters_type

Type of model parameters
model_parameters.glht

Parameters from Hypothesis Testing
format_order

Order (first, second, ...) formatting
reexports

Objects exported from other packages
rescale_weights

Rescale design weights for multilevel analysis
describe_distribution

Describe a distribution
.find_most_common

Find most common occurence
.flatten_list

Flatten a list
standard_error_robust

Robust estimation
.n_factors_bentler

Bentler and Yuan's Procedure
p_value

p-values
random_parameters

Summary information from random effects
format_parameters

Parameter names formatting
ci_ml1

"m-l-1" approximation for SEs, CIs and p-values
n_parameters

Count number of parameters in a model
ci_satterthwaite

Satterthwaite approximation for SEs, CIs and p-values
.n_factors_bartlett

Bartlett, Anderson and Lawley Procedures
reduce_parameters

Dimensionality reduction (DR) / Features Reduction
model_parameters.aov

Parameters from ANOVAs
model_parameters.merMod

Parameters from Mixed Models
get_scores

Get Scores from Principal Component Analysis (PCA)
model_parameters.befa

Parameters from PCA/FA
model_parameters.BFBayesFactor

Parameters from BayesFactor objects
model_parameters.mlm

Parameters from multinomial or cumulative link models
ci_betwithin

Between-within approximation for SEs, CIs and p-values
ci_kenward

Kenward-Roger approximation for SEs, CIs and p-values
reshape_loadings

Reshape loadings between wide/long formats
select_parameters

Automated selection of model parameters
standardize_names

Standardize column names
cluster_analysis

Compute cluster analysis and return group indices
check_clusterstructure

Check suitability of data for clustering
check_factorstructure

Check suitability of data for Factor Analysis (FA)
convert_efa_to_cfa

Conversion between EFA results and CFA structure
.filter_component

for models with zero-inflation component, return required component of model-summary
model_parameters.htest

Parameters from Correlations and t-tests