BiCopPar2Tau(family, par, par2=0)0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ``survival Clayton'')
14 = rotated Gumbel copula (180 degrees; ``survival Gumbel'')
16 = rotated Joe copula (180 degrees; ``survival Joe'')
17 = rotated BB1 copula (180 degrees; ``survival BB1'')
18 = rotated BB6 copula (180 degrees; ``survival BB6'')
19 = rotated BB7 copula (180 degrees; ``survival BB7'')
20 = rotated BB8 copula (180 degrees; ``survival BB8'')
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
par2 = 0).
Note that the degrees of freedom parameter of the t-copula does not need to be set,
because the theoretical Kendall's tau value of the t-copula is independent of this choice.| No. |
| Kendall's tau |
1, 2 |
| $2 / \pi arcsin(\theta)$ |
3, 13 |
| $\theta / (\theta+2)$ |
4, 14 |
| $1-1/\theta$ |
5 |
| $1-4/\theta + 4 D_1(\theta)/\theta$ |
| with $D_1(\theta)=\int_0^\theta (x/\theta)/(exp(x)-1)dx$ (Debye function) |
6, 16 |
| $1+4/\theta^2\int_0^1 x\log(x)(1-x)^{2(1-\theta)/\theta}dx$ |
7, 17 |
| $1-2/(\delta(\theta+2))$ |
8, 18 |
| $1+4\int_0^1 -\log(-(1-t)^\theta+1)(1-t-(1-t)^{-\theta}+(1-t)^{-\theta}t)/(\delta\theta) dt$ |
9, 19 |
| $1+4\int_0^1 ( (1-(1-t)^{\theta})^{-\delta} - )/( -\theta\delta(1-t)^{\theta-1}(1-(1-t)^{\theta})^{-\delta-1} ) dt$ |
10, 20 |
| $1+4\int_0^1 -\log \left( ((1-t\delta)^\theta-1)/((1-\delta)^\theta-1) \right) $ |
| $* (1-t\delta-(1-t\delta)^{-\theta}+(1-t\delta)^{-\theta}t\delta)/(\theta\delta) dt$ |
23, 33 |
| $\theta/(2-\theta)$ |
24, 34 |
| $-1-1/\theta$ |
26, 36 |
| $-1-4/\theta^2\int_0^1 x\log(x)(1-x)^{-2(1+\theta)/\theta}dx$ |
27, 37 |
| $1-2/(\delta(\theta+2))$ |
28, 38 |
| $-1-4\int_0^1 -\log(-(1-t)^{-\theta}+1)(1-t-(1-t)^{\theta}+(1-t)^{\theta}t)/(\delta\theta) dt$ |
29, 39 |
| $-1-4\int_0^1 ( (1-(1-t)^{-\theta})^{\delta} - )/( -\theta\delta(1-t)^{-\theta-1}(1-(1-t)^{-\theta})^{\delta-1} ) dt$ |
30, 40 |
| $-1-4\int_0^1 -\log \left( ((1+t\delta)^{-\theta}-1)/((1+\delta)^{-\theta}-1) \right)$ |
| $* (1+t\delta-(1+t\delta)^{\theta}-(1+t\delta)^{\theta}t\delta)/(\theta\delta) dt$ |
Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.
CDVinePar2Tau, BiCopTau2Par## Example 1: Gaussian copula
tt1 = BiCopPar2Tau(1,0.7)
# transform back
BiCopTau2Par(1,tt1)
## Example 2: Clayton copula
BiCopPar2Tau(3,1.3)
Run the code above in your browser using DataLab