Theoretical value of Kendall's tau (vector) corresponding to the
bivariate copula family and parameter vector \((\theta, \delta) =\)
(par, par2).
| No. ( family) | Kendall's tau ( tau) | 
| 1, 2 | \(\frac{2}{\pi}\arcsin(\theta)\) | 
| 3, 13 | \(\frac{\theta}{\theta+2}\) | 
| 4, 14 | \(1-\frac{1}{\theta}\) | 
| 5 | \(1-\frac{4}{\theta}+4\frac{D_1(\theta)}{\theta}\) | 
|  | with \(D_1(\theta)=\int_0^\theta \frac{x/\theta}{\exp(x)-1}dx\) (Debye function) | 
| 6, 16 | \(1+\frac{4}{\theta^2}\int_0^1
x\log(x)(1-x)^{2(1-\theta)/\theta}dx\) | 
| 7, 17 | \(1-\frac{2}{\delta(\theta+2)}\) | 
| 8, 18 | \(1+4\int_0^1 -\log(-(1-t)^\theta+1)
(1-t-(1-t)^{-\theta}+(1-t)^{-\theta}t)/(\delta\theta) dt\) | 
| 9, 19 | \(1+4\int_0^1 ( (1-(1-t)^{\theta})^{-\delta} - 1)
/( -\theta\delta(1-t)^{\theta-1}(1-(1-t)^{\theta})^{-\delta-1} ) dt\) | 
| 10, 20 | \(1+4\int_0^1
-\log \left(((1-t\delta)^\theta-1)/((1-\delta)^\theta-1) \right) \) | 
|  | \(* (1-t\delta-(1-t\delta)^{-\theta}+(1-t\delta)^{-\theta}t\delta)/(\theta\delta) dt\) | 
| 23, 33 | \(\frac{\theta}{2-\theta}\) | 
| 24, 34 | \(-1-\frac{1}{\theta}\) | 
| 26, 36 | \(-1-\frac{4}{\theta^2}\int_0^1
x\log(x)(1-x)^{-2(1+\theta)/\theta}dx\) | 
| 27, 37 | \(-1-\frac{2}{\delta(2-\theta)}\) | 
| 28, 38 | \(-1-4\int_0^1 -\log(-(1-t)^{-\theta}+1)
(1-t-(1-t)^{\theta}+(1-t)^{\theta}t)/(\delta\theta) dt\) | 
| 29, 39 | \(-1-4\int_0^1 ( (1-(1-t)^{-\theta})^{\delta} - 1)
/( -\theta\delta(1-t)^{-\theta-1}(1-(1-t)^{-\theta})^{\delta-1} ) dt\) | 
| 30, 40 | \(-1-4\int_0^1 -\log
\left( ((1+t\delta)^{-\theta}-1)/((1+\delta)^{-\theta}-1) \right)\) | 
|  | \(* (1+t\delta-(1+t\delta)^{\theta}-(1+t\delta)^{\theta}t\delta)/(\theta\delta) dt\) | 
| 104,114 | \(\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt\) | 
|  | with \(A(t) = (1-\delta)t+[(\delta(1-t))^{\theta}+t^{\theta}]^{1/\theta}\) | 
| 204,214 | \(\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt\) | 
|  | with \(A(t) = (1-\delta)(1-t)+[(1-t)^{-\theta}+(\delta t)^{-\theta}]^{-1/\theta}\) | 
| 124,134 | \(-\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt\) | 
|  | with \(A(t) = (1-\delta)t+[(\delta(1-t))^{-\theta}+t^{-\theta}]^{-1/\theta}\) | 
| 224,234 | \(-\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt\) | 
|  | with \(A(t) = (1-\delta)(1-t)+[(1-t)^{-\theta}+(\delta t)^{-\theta}]^{-1/\theta}\) |