library(SSN)
# NOT RUN
# mf04 <- importSSN(system.file("lsndata/MiddleFork04.ssn",
# package = "SSN"), o.write = TRUE)
# use SpatialStreamNetwork object mf04 that was already created
data(mf04p)
#make sure mf04p has the correct path, will vary for each users installation
mf04p <- updatePath(mf04p, system.file("lsndata/MiddleFork04.ssn", package = "SSN"))
## NOT RUN Distance Matrix has already been created
## createDistMat(mf04)
# mf04p <- importPredpts(mf04p, "Knapp", "ssn")
# mf04p <- importPredpts(mf04p, "CapeHorn", "ssn")
names(mf04p)
## NOTE: need the amongpreds distance matrices for block prediction
#createDistMat(mf04p, predpts = "Knapp", o.write = TRUE, amongpreds = TRUE)
# just do CapeHorn Example
createDistMat(mf04p, predpts = "CapeHorn", o.write = TRUE, amongpreds = TRUE)
# NOT RUN see densely gridded prediction points on stream
# plot(mf04p, PredPointsID = "Knapp")
# NOT RUN fit the model first
#fitSpBk <- glmssn(Summer_mn ~ ELEV_DEM + netID,
# ssn.object = mf04p, EstMeth = "REML", family = "Gaussian",
# CorModels = c("Exponential.tailup","Exponential.taildown",
# "Exponential.Euclid"), addfunccol = "afvArea")
data(modelFits)
fitSpBk$ssn.object <- updatePath(fitSpBk$ssn.object,
system.file("lsndata/MiddleFork04.ssn", package = "SSN"))
# one-at-a-time predictions for CapeHorn stream
fitSpPredC <- predict(fitSpBk, "CapeHorn")
# NOT RUN plot densely gridded prediction points on stream
# plot(glmssn.BPCapeHorn, "Summer_mn")
# block prediction for CapeHorn stream
BlockPredict(fitSpBk, "CapeHorn")
## NOT RUN Another example
# one-at-a-time predictions for Knapp stream
#fitSpPredK <- predict(fitSpBk, "Knapp")
# NOT RUN plot densely gridded prediction points on stream
# plot(fitSpPredK, "Summer_mn")
# block prediction for Knapp stream
#BlockPredict(fitSpBk, "Knapp")
Run the code above in your browser using DataLab