This function is used for thresholding coefficients by group (or block) according to the hard or soft thresholding rule.
BlockThresh(wc, j0, hatsigma, L, qmf, thresh = "hard")
wavelet coefficients.
coarsest decomposition scale.
estimator of noise variance.
Block size (n mod L must be 0).
Orthonormal quadrature mirror filter.
'hard' or 'soft'.
wcb
wavelet coefficient estimators.
# NOT RUN {
n <- 64
x <- MakeSignal('Ramp', n)
sig <- 0.01
y <- x + rnorm(n, sd=sig)
j0 <- 1
qmf <- MakeONFilter('Daubechies',8)
wc <- FWT_PO(y, j0, qmf)
L <- 2
wcb <- BlockThresh(wc, j0, sig, L, qmf, "hard")
# }
Run the code above in your browser using DataLab