# load the package
library(CORElearn)
cat(versionCore(),"")
# use iris data set
# build random forests model with certain parameters
model <- CoreModel(Species ~ ., iris, model="rf",
selectionEstimator="MDL",minNodeWeight=5,rfNoTrees=100)
print(model)
# prediction with node distribution
pred <- predict.CoreModel(model, iris, rfPredictClass=FALSE)
print(pred)
# Model evaluation
mEval <- modelEval(model, iris[["Species"]], pred$class, pred$prob)
print(mEval)
# evaluate features in given data set with selected method
estReliefF <- attrEval(Species ~ ., iris,
estimator="ReliefFexpRank", ReliefIterations=30)
print(estReliefF)
# evaluate ordered features with ordEval
profiles <- ordDataGen(200)
est <- ordEval(class ~ ., profiles, ordEvalNoRandomNormalizers=100)
print(est)
Run the code above in your browser using DataLab