CPMCGLM(formula, family, link, data, varcod, dicho, nb.dicho, categ,
nb.categ, boxcox, nboxcox, N=1000, cutpoint)print.CPMCGLM, summary.CPMCGLM# load data
data(data_sim)
#
#Example of quantile matrix definition
#Linear Gaussian Model
fit1 <- CPMCGLM(formula= Weight~Age+as.factor(Sport)+Desease+Height,
family="gaussian",link="identity",data=data_sim,varcod="Age",N=1000,
boxcox=c(0,1,2,3),nb.dicho=3,nb.categ=4)
### print fit1
fit1
### summary fit1
summary(fit1)
#Loglinear Poisson Model
fit2 <- CPMCGLM(formula= Stroke~Age+as.factor(Sport)+Height+Weight,
family="poisson",link="log",data=data_sim,varcod="Age",N=1000,
boxcox=c(0,1,2,3))
### print fit2
fit2
### summary fit2
summary(fit2)
#Logit Model
fit3 <- CPMCGLM(formula= Parameter~Age+as.factor(Sport)+Height+Weight,
family="binomial",link="logit",data=data_sim,varcod="Age",N=1000,
boxcox=c(0,1,2,3),nb.dicho=3)
### print fit3
fit3
### summary fit3
summary(fit3)
#Probit Model
fit4 <- CPMCGLM(formula= Parameter~Age+as.factor(Sport)+Height+Weight,
family="binomial",link="probit",data=data_sim,varcod="Age",N=1000,
nboxcox=2,nb.categ=4)
### print fit4
fit4
### summary fit4
summary(fit4)Run the code above in your browser using DataLab