Learn R Programming

InPAS (version 1.4.4)

CPsites: predict the cleavage and polyadenylation(CP) site

Description

predict the alternative cleavage and polyadenylation (CP or APA) site.

Usage

CPsites(coverage, groupList=NULL, genome, utr3, window_size=100, search_point_START=50, search_point_END=NA, cutStart=window_size, cutEnd=0, adjust_distal_polyA_end=TRUE, coverage_threshold=5, long_coverage_threshold=2, background=c("same_as_long_coverage_threshold", "1K", "5K", "10K", "50K"), txdb=NA, gcCompensation=NA, mappabilityCompensation=NA, FFT=FALSE, fft.sm.power=20, PolyA_PWM=NA, classifier=NA, classifier_cutoff=.8, shift_range=window_size, BPPARAM=NULL, tmpfolder=NULL, silence=TRUE)

Arguments

coverage
coverage for each sample, output of coverageFromBedGraph
groupList
group list of tag names
genome
an object of BSgenome
utr3
output of utr3Annotation
window_size
window size for noval distal position searching and adjusted polyA searching, default: 100
search_point_START
start point for searching
search_point_END
end point for searching
cutStart
how many nucleotides should be removed from the start before search, 0.1 means 10 percent, 25 means cut first 25.
cutEnd
how many nucleotides should be removed from the end before search, 0.1 means 10 percent.
adjust_distal_polyA_end
If true, adjust distal polyA end by cleanUpdTSeq
coverage_threshold
cutoff coverage threshold for first 100 nucleotides. If the coverage of first 100 nucleotides is lower than coverage_threshold, that transcript will be dropped.
long_coverage_threshold
cutoff threshold for coverage in the region of long form. If the coverage in the region of long form is less than long_coverage_threshold, that transcript will be dropped.
background
the range for calculating cutoff threshold of local background
txdb
an object of TxDb
gcCompensation
GC content compensation vector
mappabilityCompensation
mappability compensation vector
FFT
use Fast Fourier Transform Algorithm to smooth the data or not. default: FALSE
fft.sm.power
if FFT is TRUE, the frequency should be removed
PolyA_PWM
Position Weight Matrix of polyA
classifier
An object of class "PASclassifier"
classifier_cutoff
This is the cutoff used to assign whether a putative pA is true or false. This can be any floating point number between 0 and 1. For example, classifier_cutoff = 0.5 will assign an putative pA site with prob.1 > 0.5 to the True class (1), and any putative pA site with prob.1
shift_range
the shift range for polyA site searching
BPPARAM
An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to bplapply.
tmpfolder
temp folder could save and reload the analysis data for resume analysis.
silence
report progress or not. default not report.

Value

return an object of GRanges contain the estimated CP sites.

References

ref: Cheung MS, Down TA, Latorre I, Ahringer J. Systematic bias in high-throughput sequencing data and its correction by BEADS. Nucleic Acids Res. 2011 Aug;39(15):e103. doi: 10.1093/nar/gkr425. Epub 2011 Jun 6. PubMed PMID: 21646344; PubMed Central PMCID: PMC3159482.

mappability could be calculated by [GEM](http://algorithms.cnag.cat/wiki/Man:gem-mappability) ref: Derrien T, Estelle J, Marco Sola S, Knowles DG, Raineri E, Guigo R, Ribeca P. Fast computation and applications of genome mappability. PLoS One. 2012;7(1):e30377. doi: 10.1371/journal.pone.0030377. Epub 2012 Jan 19. PubMed PMID: 22276185; PubMed Central PMCID: PMC3261895.

Examples

Run this code
    if(interactive()){
        library(BSgenome.Mmusculus.UCSC.mm10)
        path <- file.path(find.package("InPAS"), "extdata")
        bedgraphs <- file.path(path, "Baf3.extract.bedgraph")
        data(utr3.mm10)
        tags <- "Baf3"
        genome <- BSgenome.Mmusculus.UCSC.mm10
        coverage <- 
            coverageFromBedGraph(bedgraphs, tags, genome, hugeData=FALSE)
        CP <- CPsites(coverage=coverage, gp1=tags, gp2=NULL, genome=genome, 
            utr3=utr3.mm10, coverage_threshold=5, long_coverage_threshold=5)
    }

Run the code above in your browser using DataLab