CatBoostParameterGrids https://catboost.ai/docs/concepts/r-training-parameters.html
CatBoostParameterGrids(
TaskType = "CPU",
Shuffles = 1L,
NTrees = seq(1000L, 10000L, 1000L),
Depth = seq(4L, 16L, 2L),
LearningRate = c(0.01, 0.02, 0.03, 0.04),
L2_Leaf_Reg = seq(1, 10, 1),
RandomStrength = seq(1, 2, 0.1),
BorderCount = seq(32, 256, 32),
RSM = c(0.8, 0.85, 0.9, 0.95, 1),
BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide")
)
"GPU" or "CPU"
The number of shuffles you want to apply to each grid
seq(1000L, 10000L, 1000L)
seq(4L, 16L, 2L)
seq(0.01,.10,0.01)
c(1.0:10.0)
seq(1, 2, 0.1)
seq(32,256,32)
CPU ONLY, Random subspace method.c(0.80, 0.85, 0.90, 0.95, 1.0)
c("Bayesian", "Bernoulli", "Poisson", "MVS", "No")
c("SymmetricTree", "Depthwise", "Lossguide")
A list containing data.table's with the parameters shuffled and ready to test in the bandit framework
Other Supervised Learning:
AutoH2OScoring()
,
CatBoostClassifierParams()
,
CatBoostMultiClassParams()
,
CatBoostRegressionParams()
,
XGBoostClassifierParams()
,
XGBoostMultiClassParams()
,
XGBoostParameterGrids()
,
XGBoostRegressionMetrics()
,
XGBoostRegressionParams()