Last chance! 50% off unlimited learning
Sale ends in
Mathematical and statistical functions for the Noncentral Chi-Squared distribution, which is commonly used to model the sum of independent squared Normal distributions and for confidence intervals.
Returns an R6 object inheriting from class SDistribution.
ChiSquaredNoncentral$new(df = 1, location = 0, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
df |
numeric | degrees of freedom. |
location |
numeric | location (ncp in rstats). |
decorators
Decorator
decorators to add functionality. See details.
The Noncentral Chi-Squared distribution is parameterised with df
and location
as non-negative numerics.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods |
Link |
pdf(x1, ..., log = FALSE, simplify = TRUE) |
pdf |
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
cdf |
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
quantile.Distribution |
rand(n, simplify = TRUE) |
rand |
mean() |
mean.Distribution |
variance() |
variance |
stdev() |
stdev |
prec() |
prec |
cor() |
cor |
skewness() |
skewness |
kurtosis(excess = TRUE) |
kurtosis |
entropy(base = 2) |
entropy |
mgf(t) |
mgf |
cf(t) |
cf |
pgf(z) |
pgf |
median() |
median.Distribution |
iqr() |
iqr |
Parameter Methods |
Link |
parameters(id) |
parameters |
getParameterValue(id, error = "warn") |
getParameterValue |
setParameterValue(..., lst = NULL, error = "warn") |
setParameterValue |
Validation Methods |
Link |
liesInSupport(x, all = TRUE, bound = FALSE) |
liesInSupport |
liesInType(x, all = TRUE, bound = FALSE) |
liesInType |
Representation Methods |
Link |
strprint(n = 2) |
strprint |
print(n = 2) |
print |
summary(full = T) |
summary.Distribution |
The Noncentral Chi-Squared distribution parameterised with degrees of freedom,
The distribution is supported on the Positive Reals.
entropy
and mode
are
omitted as no closed form analytic expression could be found, decorate with CoreStatistics
for numerical results.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions. Normal
for the Normal distribution, ChiSquared
for the central Chi-Squared distribution. CoreStatistics
for numerical results.
# NOT RUN {
x = ChiSquaredNoncentral$new(df = 2, location = 2)
# Update parameters
x$setParameterValue(location = 3)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab