if(require(curatedOvarianData) && require(sparsediscrim))
  {
    data(TCGA_eset)
    badOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "deceased" & pData(TCGA_eset)[, "days_to_death"] <= 365)
    goodOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "living" & pData(TCGA_eset)[, "days_to_death"] >= 365 * 5)
    TCGA_eset <- TCGA_eset[, c(badOutcome, goodOutcome)]
    classes <- factor(rep(c("Poor", "Good"), c(length(badOutcome), length(goodOutcome))))
    pData(TCGA_eset)[, "class"] <- classes
    results <- runTests(TCGA_eset, "Ovarian Cancer", "Differential Expression", resamples = 2, folds = 2)
    show(results)
    predictions(results)
    actualClasses(results)
  }
Run the code above in your browser using DataLab