Learn R Programming

⚠️There's a newer version (0.22.0) of this package.Take me there.

parameters

Describe and understand your model’s parameters!

parameters’ primary goal is to provide utilities for processing the parameters of various statistical models (see here for a list of supported models). Beyond computing p-values, CIs, Bayesian indices and other measures for a wide variety of models, this package implements features like bootstrapping of parameters and models, feature reduction (feature extraction and variable selection), or tools for data reduction like functions to perform cluster, factor or principal component analysis.

Another important goal of the parameters package is to facilitate and streamline the process of reporting results of statistical models, which includes the easy and intuitive calculation of standardized estimates or robust standard errors and p-values. parameters therefor offers a simple and unified syntax to process a large variety of (model) objects from many different packages.

Installation

Run the following:

install.packages("parameters")
library("parameters")

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Contributing and Support

In case you want to file an issue or contribute in another way to the package, please follow this guide. For questions about the functionality, you may either contact us via email or also file an issue.

Features

Model’s parameters description

The model_parameters() function (that can be accessed via the parameters() shortcut) allows you to extract the parameters and their characteristics from various models in a consistent way. It can be considered as a lightweight alternative to broom::tidy(), with some notable differences:

  • The column names of the returned data frame are specific to their content. For instance, the column containing the statistic is named following the statistic name, i.e., t, z, etc., instead of a generic name such as statistic (however, you can get standardized (generic) column names using standardize_names()).
  • It is able to compute or extract indices not available by default, such as p-values, CIs, etc.
  • It includes feature engineering capabilities, including parameters bootstrapping.

Classical Regression Models

model <- lm(Sepal.Width ~ Petal.Length * Species + Petal.Width, data = iris)

# regular model parameters
model_parameters(model)
#> Parameter                           | Coefficient |   SE |         95% CI |     t |  df |      p
#> ------------------------------------------------------------------------------------------------
#> (Intercept)                         |        2.89 | 0.36 | [ 2.18,  3.60] |  8.01 | 143 | < .001
#> Petal.Length                        |        0.26 | 0.25 | [-0.22,  0.75] |  1.07 | 143 | 0.287 
#> Species [versicolor]                |       -1.66 | 0.53 | [-2.71, -0.62] | -3.14 | 143 | 0.002 
#> Species [virginica]                 |       -1.92 | 0.59 | [-3.08, -0.76] | -3.28 | 143 | 0.001 
#> Petal.Width                         |        0.62 | 0.14 | [ 0.34,  0.89] |  4.41 | 143 | < .001
#> Petal.Length * Species [versicolor] |       -0.09 | 0.26 | [-0.61,  0.42] | -0.36 | 143 | 0.721 
#> Petal.Length * Species [virginica]  |       -0.13 | 0.26 | [-0.64,  0.38] | -0.50 | 143 | 0.618 
#> 
#> Residual standard deviation: 0.30

# standardized parameters
model_parameters(model, standardize = "refit")
#> Parameter                           | Coefficient |   SE |         95% CI |     t |  df |      p
#> ------------------------------------------------------------------------------------------------
#> (Intercept)                         |        3.59 | 1.30 | [ 1.01,  6.17] |  2.75 | 143 | 0.007 
#> Petal.Length                        |        1.07 | 1.00 | [-0.91,  3.04] |  1.07 | 143 | 0.287 
#> Species [versicolor]                |       -4.62 | 1.31 | [-7.21, -2.03] | -3.53 | 143 | < .001
#> Species [virginica]                 |       -5.51 | 1.38 | [-8.23, -2.79] | -4.00 | 143 | < .001
#> Petal.Width                         |        1.08 | 0.24 | [ 0.59,  1.56] |  4.41 | 143 | < .001
#> Petal.Length * Species [versicolor] |       -0.38 | 1.06 | [-2.48,  1.72] | -0.36 | 143 | 0.721 
#> Petal.Length * Species [virginica]  |       -0.52 | 1.04 | [-2.58,  1.54] | -0.50 | 143 | 0.618 
#> 
#> Residual standard deviation: 0.68

Mixed Models

library(lme4)

model <- lmer(Sepal.Width ~ Petal.Length + (1|Species), data = iris)

# model parameters with CI, df and p-values based on Wald approximation
model_parameters(model)
#> Parameter    | Coefficient |   SE |       95% CI |    t |  df |      p
#> ----------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.56 | [0.90, 3.10] | 3.56 | 146 | < .001
#> Petal.Length |        0.28 | 0.06 | [0.17, 0.40] | 4.75 | 146 | < .001
#> 
#> Residual standard deviation: 0.32

# model parameters with CI, df and p-values based on Kenward-Roger approximation
model_parameters(model, df_method = "kenward")
#> Parameter    | Coefficient |   SE |       95% CI |    t |     df |      p
#> -------------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.57 | [0.07, 3.93] | 3.53 |   2.67 | 0.046 
#> Petal.Length |        0.28 | 0.06 | [0.16, 0.40] | 4.58 | 140.98 | < .001
#> 
#> Residual standard deviation: 0.32

Structural Models

Besides many types of regression models and packages, it also works for other types of models, such as structural models (EFA, CFA, SEM…).

library(psych)

model <- psych::fa(attitude, nfactors = 3)
model_parameters(model)
#> # Rotated loadings from Factor Analysis (oblimin-rotation)
#> 
#> Variable   |   MR1 |   MR2 |   MR3 | Complexity | Uniqueness
#> ------------------------------------------------------------
#> rating     |  0.90 | -0.07 | -0.05 |       1.02 |       0.23
#> complaints |  0.97 | -0.06 |  0.04 |       1.01 |       0.10
#> privileges |  0.44 |  0.25 | -0.05 |       1.64 |       0.65
#> learning   |  0.47 |  0.54 | -0.28 |       2.51 |       0.24
#> raises     |  0.55 |  0.43 |  0.25 |       2.35 |       0.23
#> critical   |  0.16 |  0.17 |  0.48 |       1.46 |       0.67
#> advance    | -0.11 |  0.91 |  0.07 |       1.04 |       0.22
#> 
#> The 3 latent factors (oblimin rotation) accounted for 66.60% of the total variance of the original data (MR1 = 38.19%, MR2 = 22.69%, MR3 = 5.72%).

Variable and parameters selection

select_parameters() can help you quickly select and retain the most relevant predictors using methods tailored for the model type.

library(dplyr)

lm(disp ~ ., data = mtcars) %>% 
  select_parameters() %>% 
  model_parameters()
#> Parameter   | Coefficient |     SE |            95% CI |     t | df |      p
#> ----------------------------------------------------------------------------
#> (Intercept) |      141.70 | 125.67 | [-116.62, 400.02] |  1.13 | 26 | 0.270 
#> cyl         |       13.14 |   7.90 | [  -3.10,  29.38] |  1.66 | 26 | 0.108 
#> hp          |        0.63 |   0.20 | [   0.22,   1.03] |  3.18 | 26 | 0.004 
#> wt          |       80.45 |  12.22 | [  55.33, 105.57] |  6.58 | 26 | < .001
#> qsec        |      -14.68 |   6.14 | [ -27.31,  -2.05] | -2.39 | 26 | 0.024 
#> carb        |      -28.75 |   5.60 | [ -40.28, -17.23] | -5.13 | 26 | < .001
#> 
#> Residual standard deviation: 29.57

Miscellaneous

This packages also contains a lot of other useful functions:

Describe a Distribution

data(iris)
describe_distribution(iris)
#> Variable     | Mean |   SD |  IQR |        Range | Skewness | Kurtosis |   n | n_Missing
#> ----------------------------------------------------------------------------------------
#> Sepal.Length | 5.84 | 0.83 | 1.30 | [4.30, 7.90] |     0.31 |    -0.55 | 150 |         0
#> Sepal.Width  | 3.06 | 0.44 | 0.52 | [2.00, 4.40] |     0.32 |     0.23 | 150 |         0
#> Petal.Length | 3.76 | 1.77 | 3.52 | [1.00, 6.90] |    -0.27 |    -1.40 | 150 |         0
#> Petal.Width  | 1.20 | 0.76 | 1.50 | [0.10, 2.50] |    -0.10 |    -1.34 | 150 |         0

Citation

In order to cite this package, please use the following citation:

  • Lüdecke D, Ben-Shachar M, Patil I, Makowski D (2020). parameters: Extracting, Computing and Exploring the Parameters of Statistical Models using R. Journal of Open Source Software, 5(53), 2445. doi: 10.21105/joss.02445

Corresponding BibTeX entry:

@Article{,
  title = {parameters: Extracting, Computing and Exploring the Parameters of Statistical Models using {R}.},
  volume = {5},
  doi = {10.21105/joss.02445},
  number = {53},
  journal = {Journal of Open Source Software},
  author = {Daniel Lüdecke and Mattan S. Ben-Shachar and Indrajeet Patil and Dominique Makowski},
  year = {2020},
  pages = {2445},
}

Copy Link

Version

Install

install.packages('parameters')

Monthly Downloads

87,418

Version

0.9.0

License

GPL-3

Maintainer

Daniel Lüdecke

Last Published

October 29th, 2020

Functions in parameters (0.9.0)

bootstrap_model

Model bootstrapping
cluster_analysis

Compute cluster analysis and return group indices
check_kmo

Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis
center

Centering (Grand-Mean Centering)
check_factorstructure

Check suitability of data for Factor Analysis (FA)
check_multimodal

Check if a distribution is unimodal or multimodal
ci.merMod

Confidence Intervals (CI)
check_clusterstructure

Check suitability of data for clustering
check_sphericity

Bartlett's Test of Sphericity
bootstrap_parameters

Parameters bootstrapping
.compact_list

remove NULL elements from lists
degrees_of_freedom

Degrees of Freedom (DoF)
check_heterogeneity

Compute group-meaned and de-meaned variables
.filter_component

for models with zero-inflation component, return required component of model-summary
describe_distribution

Describe a distribution
model_parameters.glht

Parameters from Hypothesis Testing
.recode_to_zero

Recode a variable so its lowest value is beginning with zero
convert_data_to_numeric

Convert data to numeric
cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups
.n_factors_sescree

Standard Error Scree and Coefficient of Determination Procedures
.data_frame

help-functions
.find_most_common

Find most common occurence
.n_factors_mreg

Multiple Regression Procedure
convert_efa_to_cfa

Conversion between EFA results and CFA structure
.n_factors_scree

Non Graphical Cattell's Scree Test
model_parameters.rma

Parameters from Meta-Analysis
.factor_to_dummy

Safe transformation from factor/character to numeric
data_partition

Partition data into a test and a training set
qol_cancer

Sample data set
p_value.DirichletRegModel

p-values for Models with Special Components
p_value

p-values
model_parameters.stanreg

Parameters from Bayesian Models
random_parameters

Summary information from random effects
simulate_parameters

Simulate Model Parameters
skewness

Compute Skewness and Kurtosis
factor_analysis

Factor Analysis (FA)
equivalence_test.lm

Equivalence test
.compact_character

remove empty string from character
.factor_to_numeric

Safe transformation from factor/character to numeric
model_parameters.averaging

Parameters from special models
reduce_parameters

Dimensionality reduction (DR) / Features Reduction
model_parameters.befa

Parameters from PCA/FA
reexports

Objects exported from other packages
.flatten_list

Flatten a list
model_parameters.mira

Parameters from multiply imputed repeated analyses
p_value.brmsfit

p-values for Bayesian Models
model_parameters.merMod

Parameters from Mixed Models
p_value.lmerMod

p-values for Mixed Models
model_parameters.htest

Parameters from Correlations and t-tests
format_parameters

Parameter names formatting
principal_components

Principal Component Analysis (PCA)
.n_factors_bentler

Bentler and Yuan's Procedure
print

Print model parameters
select_parameters

Automated selection of model parameters
simulate_model

Simulated draws from model coefficients
model_parameters

Model Parameters
model_parameters.aov

Parameters from ANOVAs
rescale_weights

Rescale design weights for multilevel analysis
model_parameters.PCA

Parameters from Structural Models (PCA, EFA, ...)
p_value.poissonmfx

p-values for Marginal Effects Models
get_scores

Get Scores from Principal Component Analysis (PCA)
model_parameters.mlm

Parameters from multinomial or cumulative link models
p_value.zeroinfl

p-values for Models with Zero-Inflation
.n_factors_bartlett

Bartlett, Anderson and Lawley Procedures
fish

Sample data set
.n_factors_cng

Cattell-Nelson-Gorsuch CNG Indices
ci_satterthwaite

Satterthwaite approximation for SEs, CIs and p-values
model_parameters.gam

Parameters from Generalized Additive (Mixed) Models
n_clusters

Number of clusters to extract
model_parameters.Mclust

Parameters from Mixture Models
model_parameters.BFBayesFactor

Parameters from BayesFactor objects
model_parameters.zeroinfl

Parameters from Zero-Inflated Models
model_parameters.logitor

Parameters from (General) Linear Models
ci_ml1

"m-l-1" approximation for SEs, CIs and p-values
reshape_loadings

Reshape loadings between wide/long formats
format_order

Order (first, second, ...) formatting
ci_wald

Wald-test approximation for CIs and p-values
ci_betwithin

Between-within approximation for SEs, CIs and p-values
ci_kenward

Kenward-Roger approximation for SEs, CIs and p-values
standard_error

Standard Errors
parameters_table

Parameter table formatting
model_parameters.lavaan

Parameters from CFA/SEM models
n_parameters

Count number of parameters in a model
model_parameters.kmeans

Parameters from Cluster Models (k-means, ...)
smoothness

Quantify the smoothness of a vector
n_factors

Number of components/factors to retain in PCA/FA
parameters_type

Type of model parameters
pool_parameters

Pool Model Parameters
standard_error_robust

Robust estimation