Last chance! 50% off unlimited learning
Sale ends in
Correlation analysis (to R Console or MS Word).
Corr(
data,
method = "pearson",
p.adjust = "none",
all.as.numeric = TRUE,
digits = 2,
nsmall = digits,
file = NULL,
plot = TRUE,
plot.range = c(-1, 1),
plot.palette = NULL,
plot.color.levels = 201,
plot.file = NULL,
plot.width = 8,
plot.height = 6,
plot.dpi = 500
)
Data frame.
"pearson"
(default), "spearman"
, or "kendall"
.
Adjustment of p values for multiple tests:
"none"
, "fdr"
, "holm"
, "bonferroni"
, ...
For details, see stats::p.adjust()
.
TRUE
(default) or FALSE
.
Transform all variables into numeric (continuous).
Number of decimal places of output. Default is 2
.
File name of MS Word (.doc
).
TRUE
(default) or FALSE
. Plot the correlation matrix.
Range of correlation coefficients for plot. Default is c(-1, 1)
.
Color gradient for plot. Default is c("#B52127", "white", "#2171B5")
.
You may also set it to, e.g., c("red", "white", "blue")
.
Default is 201
.
NULL
(default, plot in RStudio) or a file name ("xxx.png"
).
Width (in "inch") of the saved plot. Default is 8
.
Height (in "inch") of the saved plot. Default is 6
.
DPI (dots per inch) of the saved plot. Default is 500
.
Invisibly return the correlation results obtained from
psych::corr.test()
.
# NOT RUN {
Corr(airquality)
Corr(airquality, p.adjust="bonferroni")
d=as.data.table(psych::bfi)
d[,`:=`(
gender=as.factor(gender),
education=as.factor(education),
E=MEAN(d, "E", 1:5, rev=c(1,2), likert=1:6),
A=MEAN(d, "A", 1:5, rev=1, likert=1:6),
C=MEAN(d, "C", 1:5, rev=c(4,5), likert=1:6),
N=MEAN(d, "N", 1:5, likert=1:6),
O=MEAN(d, "O", 1:5, rev=c(2,5), likert=1:6)
)]
Corr(d[,.(age, gender, education, E, A, C, N, O)])
# }
Run the code above in your browser using DataLab