readsToTarget
or
readsToTargets
. For most use cases, a CrisprSet object should not
be accessed directly.
crispr_runs
ref
cigar_freqs
target
classifyCodingBySize(var_type, cutoff = 10)
classifyVariantsByLoc(txdb, add_chr = TRUE, verbose = TRUE, ...)
classifyVariantsByType(...)
filterUniqueLowQual(min_count = 2, max_n = 0, verbose = TRUE)
filterVariants(cig_freqs = NULL, names = NULL, columns = NULL,
include.chimeras = TRUE)
heatmapCigarFreqs(as.percent = TRUE, x.size = 8, y.size = 8,
x.axis.title = NULL, x.angle = 90, min.freq = 0, min.count = 0,
top.n = nrow(.self$cigar_freqs), type = c("counts", "proportions"),
header = c("default", "counts", "efficiency"), order = NULL, ...)
makePairwiseAlns(cig_freqs = .self$cigar_freqs, ...)
mutationEfficiency(snv = c("non_variant", "include", "exclude"),
include.chimeras = TRUE, exclude.cols = NULL, group = NULL,
filter.vars = NULL, filter.cols = NULL, count.alleles = FALSE,
per.sample = TRUE, min.freq = 0)
plotVariants(min.freq = 0, min.count = 0, top.n = nrow(.self$cigar_freqs),
renumbered = .self$pars["renumbered"], add.other = add.other, ...)
readsToTarget
and readsToTargets
for initialising a CrisprSet, CrisprRun
# Load the metadata table
md_fname <- system.file("extdata", "gol_F1_metadata_small.txt", package = "CrispRVariants")
md <- read.table(md_fname, sep = "\t", stringsAsFactors = FALSE)
# Get bam filenames and their full paths
bam_fnames <- sapply(md$bam.filename, function(fn){
system.file("extdata", fn, package = "CrispRVariants")})
reference <- Biostrings::DNAString("GGTCTCTCGCAGGATGTTGCTGG")
gd <- GenomicRanges::GRanges("18", IRanges::IRanges(4647377, 4647399), strand = "+")
crispr_set <- readsToTarget(bam_fnames, target = gd, reference = reference,
names = md$experiment.name, target.loc = 17)
Run the code above in your browser using DataLab