A.KB(matrix,
NA.method = "NPModel", Save.MatImp = FALSE,
IP = NULL, IRT.PModel = "2PL", Ability = NULL, Ability.PModel = "ML",
mu = 0, sigma = 1)
D.KB(matrix,
NA.method = "NPModel", Save.MatImp = FALSE,
IP = NULL, IRT.PModel = "2PL", Ability = NULL, Ability.PModel = "ML",
mu = 0, sigma = 1)
E.KB(matrix,
NA.method = "NPModel", Save.MatImp = FALSE,
IP = NULL, IRT.PModel = "2PL", Ability = NULL, Ability.PModel = "ML",
mu = 0, sigma = 1)"Hotdeck", "NPModel" (default), and "PModel".IP=NULL). The options available are "1PL", "2PL" (default), and "3PL".matrix.
In case no ability parameters are available then Ability=NULL.Ability=NULL). The options available are "ML" (default), "BM", and "WL".method="BM". Default is 0.method="BM". Default is 1.NA.method="PModel", otherwise NULL.NA.method="PModel", otherwise NULL.NA.method="PModel", otherwise NULL.NA.method="PModel", otherwise NULL.matrix that consist of only 0s or only 1s (NA values are returned instead).
Missing values in matrix are imputed by one of three single imputation methods: Hotdeck imputation (NA.method = "Hotdeck"), nonparametric model imputation (NA.method = "NPModel"), and parametric model imputation (NA.method = "PModel"); see Zhang and Walker (2008).
IRT.PModel = "1PL","2PL", or"3PL"). Item parameters (IP) and ability parameters (Ability) may be provided for this purpose (otherwise the algorithm finds estimates for these parameters).# Load the inadequacy scale data (dichotomous item scores):
data(InadequacyData)
# Compute the A.KB, D.KB, and E.KB scores:
A.out <- A.KB(InadequacyData); A.out
D.out <- D.KB(InadequacyData); D.out
E.out <- E.KB(InadequacyData); E.outRun the code above in your browser using DataLab