####=========================================####
#### EXAMPLE 1
####=========================================####
####random population of 200 lines with 1000 markers
X <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {
X[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
}
D <- D.mat(X)
########################################################
########################################################
########################################################
########################################################
########################################################
########################################################
####=========================================####
#### EXAMPLE 2
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
data(CPdata)
CPpheno <- CPdata$pheno
CPgeno <- CPdata$geno
## look at the data
#head(CPpheno)
#CPgeno[1:5,1:5]
## fit a model including additive and dominance effects
y <- CPpheno$color
Za <- diag(length(y))
Zd <- diag(length(y))
Ze <- diag(length(y))
A <- A.mat(CPgeno) # additive relationship matrix
D <- D.mat(CPgeno) # dominant relationship matrix
y.trn <- y # for prediction accuracy
ww <- sample(c(1:dim(Za)[1]),72) # delete data for 1/5 of the population
y.trn[ww] <- NA
####================####
#### ADDITIVE MODEL ####
####================####
ETA.A <- list(list(Z=Za,K=A))
#ans.A <- mmer(y=y.trn, Z=ETA.A)
#cor(ans.A$fitted.y[ww], y[ww], use="pairwise.complete.obs")
####=========================####
#### ADDITIVE-DOMINANT MODEL ####
####=========================####
ETA.AD <- list(list(Z=Za,K=A),list(Z=Zd,K=D))
#ans.AD <- mmer(y=y.trn, Z=ETA.AD)
#cor(ans.AD$fitted.y[ww], y[ww], use="pairwise.complete.obs")
### greater accuracy !!!! 4 percent increment!!
### we run 100 iterations, 4 percent increment in general
Run the code above in your browser using DataLab