# NOT RUN {
# loading 100-item medical admission test data sets
data(dataMedical, dataMedicalgraded)
# binary data set
dataBin <- dataMedical[, 1:100]
# ordinal data set
dataOrd <- dataMedicalgraded[, 1:100]
# DDplot of binary data set
DDplot(dataBin)
# }
# NOT RUN {
# DDplot of binary data set without threshold
DDplot(dataBin, thr = NULL)
# compared to DDplot using ordinal data set and 'bin = TRUE'
DDplot(dataOrd, bin = TRUE)
# compared to binarized data set using bin = TRUE and cutscore equal to 3
DDplot(dataOrd, bin = TRUE, cutscore = 3)
# DDplot of binary data using generalized ULI
# discrimination based on 5 groups, comparing 4th and 5th
# threshold lowered to 0.1
DDplot(dataBin, k = 5, l = 4, u = 5, thr = 0.1)
# DDplot of ordinal data set using ULI
DDplot(dataOrd)
# DDplot of ordinal data set using generalized ULI
# discrimination based on 5 groups, comparing 4th and 5th
# threshold lowered to 0.1
DDplot(dataOrd, k = 5, l = 4, u = 5, thr = 0.1)
# DDplot of ordinal data set using RIT
DDplot(dataOrd, discrim = "RIT")
# DDplot of ordinal data set using RIR
DDplot(dataOrd, discrim = "RIR")
# DDplot of ordinal data set disaplaying only difficulty
DDplot(dataBin, discrim = "none")
# DDplot of ordinal data set disaplaying difficulty estimates
DDplot(dataOrd)
# DDplot of ordinal data set disaplaying average item scores
DDplot(dataOrd, average.score = TRUE)
# item difficulty / criterion validity plot for data with criterion
data <- difNLR::GMAT[, 1:20]
criterion <- difNLR::GMAT[, "criterion"]
DDplot(data, criterion = criterion, val_type = "simple")
# }
Run the code above in your browser using DataLab