## Not run:
# # School Girls Data Example
#
# data(schoolgirls)
# attach(schoolgirls)
#
# # Prior information
# # Prior information
#
# tinv<-diag(10,2)
# prior<-list(alpha=1,nu0=4.01,tau1=0.001,tau2=0.001,
# tinv=tinv,mub=rep(0,2),Sb=diag(1000,2))
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
#
# nburn<-5000
# nsave<-25000
# nskip<-20
# ndisplay<-1000
# mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,ndisplay=ndisplay)
#
# # Fit the model
#
# fit1<-DPlmm(fixed=height~1,random=~age|child,prior=prior,mcmc=mcmc,
# state=state,status=TRUE)
# fit1
#
#
# # Extract random effects
#
# DPrandom(fit1)
# DPrandom(fit1,centered=TRUE)
#
# plot(DPrandom(fit1))
# plot(DPrandom(fit1,centered=TRUE))
#
# # Extract predictive information of random effects
#
# DPrandom(fit1,predictive=TRUE)
# DPrandom(fit1,centered=TRUE,predictive=TRUE)
#
# plot(DPrandom(fit1,predictive=TRUE))
# plot(DPrandom(fit1,centered=TRUE,predictive=TRUE))
# ## End(Not run)
Run the code above in your browser using DataLab