# NOT RUN {
  # Generation of a DataStack object
  ##################################
  # Outcome parameter set 1
  outcome1.placebo = parameters(mean = 0, sd = 70)
  outcome1.treatment = parameters(mean = 40, sd = 70)
  # Outcome parameter set 2
  outcome2.placebo = parameters(mean = 0, sd = 70)
  outcome2.treatment = parameters(mean = 50, sd = 70)
  # Data model
  case.study1.data.model = DataModel() +
    OutcomeDist(outcome.dist = "NormalDist") +
    SampleSize(c(50, 55, 60, 65, 70)) +
    Sample(id = "Placebo",
           outcome.par = parameters(outcome1.placebo, outcome2.placebo)) +
    Sample(id = "Treatment",
           outcome.par = parameters(outcome1.treatment, outcome2.treatment))
  # Simulation Parameters
  case.study1.sim.parameters = SimParameters(n.sims = 1000,
                                             proc.load = 2,
                                             seed = 42938001)
  # Generate data
  case.study1.data.stack = DataStack(data.model = case.study1.data.model,
                                     sim.parameters = case.study1.sim.parameters)
  # Print the data set generated in the 100th simulation run
  # for the 2nd data scenario for both samples
  case.study1.data.stack$data.set[[100]]$data.scenario[[2]]
  # Extract the same set of data
  case.study1.extracted.data.stack = ExtractDataStack(data.stack = case.study1.data.stack,
                                                      data.scenario = 2,
                                                      simulation.run = 100)
  # The same dataset can be obtained using
  case.study1.extracted.data.stack$data.set[[1]]$data.scenario[[1]]$sample
  # A carefull attention should be paid on the index of the result.
  # As only one data.scenario has been requested
  # the result for data.scenario = 2 is now in the first position (data.scenario[[1]]).
# }
# NOT RUN {
# }
# NOT RUN {
  #Use of a DataStack object in the CSE function
  ##############################################
  # Outcome parameter set 1
  outcome1.placebo = parameters(mean = 0, sd = 70)
  outcome1.treatment = parameters(mean = 40, sd = 70)
  # Outcome parameter set 2
  outcome2.placebo = parameters(mean = 0, sd = 70)
  outcome2.treatment = parameters(mean = 50, sd = 70)
  # Data model
  case.study1.data.model = DataModel() +
    OutcomeDist(outcome.dist = "NormalDist") +
    SampleSize(c(50, 55, 60, 65, 70)) +
    Sample(id = "Placebo",
           outcome.par = parameters(outcome1.placebo, outcome2.placebo)) +
    Sample(id = "Treatment",
           outcome.par = parameters(outcome1.treatment, outcome2.treatment))
  # Simulation Parameters
  case.study1.sim.parameters = SimParameters(n.sims = 1000,
                                             proc.load = 2,
                                             seed = 42938001)
  # Generate data
  case.study1.data.stack = DataStack(data.model = case.study1.data.model,
                                     sim.parameters = case.study1.sim.parameters)
  # Analysis model
  case.study1.analysis.model = AnalysisModel() +
    Test(id = "Placebo vs treatment",
         samples = samples("Placebo", "Treatment"),
         method = "TTest")
  # Evaluation model
  case.study1.evaluation.model = EvaluationModel() +
    Criterion(id = "Marginal power",
              method = "MarginalPower",
              tests = tests("Placebo vs treatment"),
              labels = c("Placebo vs treatment"),
              par = parameters(alpha = 0.025))
  # Simulation Parameters
  case.study1.sim.parameters = SimParameters(n.sims = 1000, proc.load = 2, seed = 42938001)
  # Perform clinical scenario evaluation
  case.study1.results = CSE(case.study1.data.stack,
                            case.study1.analysis.model,
                            case.study1.evaluation.model,
                            case.study1.sim.parameters)
# }
Run the code above in your browser using DataLab