Utilities for developing R software
The {oeli}
package offers a collection of handy functions that I found
useful while developing R packages. Perhaps you’ll find them helpful
too!
Installation
The released package version can be installed from CRAN via:
install.packages("oeli")
Demos
The package includes helpers for various tasks and objects. Some demos are shown below. Click the headings for reference pages with documentation on all available helpers in each category.
Distributions
The package has density and sampling functions for distributions not in base R, such as Dirichlet, multivariate normal, truncated normal, and Wishart. For faster computation, an Rcpp implementation is also available.
ddirichlet(x = c(0.2, 0.3, 0.5), concentration = 1:3)
#> [1] 4.5
rdirichlet(concentration = 1:3)
#> [1] 0.2032900 0.2310928 0.5656171
Function helpers
Retrieving default arguments of a function
:
f <- function(a, b = 1, c = "", ...) { }
function_defaults(f)
#> $b
#> [1] 1
#>
#> $c
#> [1] ""
Indexing helpers
Create all possible permutations of vector elements:
permutations(LETTERS[1:3])
#> [[1]]
#> [1] "A" "B" "C"
#>
#> [[2]]
#> [1] "A" "C" "B"
#>
#> [[3]]
#> [1] "B" "A" "C"
#>
#> [[4]]
#> [1] "B" "C" "A"
#>
#> [[5]]
#> [1] "C" "A" "B"
#>
#> [[6]]
#> [1] "C" "B" "A"
Package helpers
Quickly have a basic logo for your new package:
package_logo("my_package", brackets = TRUE, use_logo = FALSE)
How to print a matrix without filling up the entire console?
x <- matrix(rnorm(10000), ncol = 100, nrow = 100)
print_matrix(x, rowdots = 4, coldots = 4, digits = 2, label = "what a big matrix")
#> what a big matrix : 100 x 100 matrix of doubles
#> [,1] [,2] [,3] ... [,100]
#> [1,] 0.01 0.59 -1.02 ... 1.73
#> [2,] -0.11 -0.01 2.37 ... 0.22
#> [3,] -1.87 0.09 -1.24 ... -0.93
#> ... ... ... ... ... ...
#> [100,] 0.6 -0.99 -0.26 ... -0.9
Simulation helpers
Let’s simulate a Markov chain:
Gamma <- sample_transition_probability_matrix(dim = 3)
simulate_markov_chain(Gamma = Gamma, T = 20)
#> [1] 2 2 3 2 1 2 2 2 2 1 2 2 1 1 2 3 3 1 1 1
Transformation helpers
The group_data_frame()
function groups a given data.frame
based on
the values in a specified column:
df <- data.frame("label" = c("A", "B"), "number" = 1:10)
group_data_frame(df = df, by = "label")
#> $A
#> label number
#> 1 A 1
#> 3 A 3
#> 5 A 5
#> 7 A 7
#> 9 A 9
#>
#> $B
#> label number
#> 2 B 2
#> 4 B 4
#> 6 B 6
#> 8 B 8
#> 10 B 10
Validation helpers
Is my matrix a proper transition probability matrix?
matrix <- diag(4)
matrix[1, 2] <- 1
check_transition_probability_matrix(matrix)
#> [1] "Must have row sums equal to 1"