E(object, fun, cond, ...)
## S3 method for class 'UnivariateDistribution,missing,missing':
E(object,
low = NULL, upp = NULL, Nsim = getdistrExOption("MCIterations"), ...)
## S3 method for class 'UnivariateDistribution,function,missing':
E(object, fun,
useApply = TRUE, low = NULL, upp = NULL, Nsim = getdistrExOption("MCIterations"), ...)
## S3 method for class 'AbscontDistribution,function,missing':
E(object, fun, useApply = TRUE,
low = NULL, upp = NULL,
rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ...)
## S3 method for class 'UnivarMixingDistribution,missing,missing':
E(object, low = NULL,
upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ...)
## S3 method for class 'UnivarMixingDistribution,function,missing':
E(object, fun, useApply = TRUE,
low = NULL, upp = NULL,
rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ...)
## S3 method for class 'UnivarMixingDistribution,missing,ANY':
E(object, cond, low = NULL,
upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ...)
## S3 method for class 'UnivarMixingDistribution,function,ANY':
E(object, fun, cond, useApply = TRUE,
low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ...)
## S3 method for class 'DiscreteDistribution,function,missing':
E(object, fun, useApply = TRUE,
low = NULL, upp = NULL, ...)
## S3 method for class 'AffLinDistribution,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'AffLinUnivarLebDecDistribution,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'MultivariateDistribution,missing,missing':
E(object,
Nsim = getdistrExOption("MCIterations"), ...)
## S3 method for class 'MultivariateDistribution,function,missing':
E(object, fun, useApply = TRUE,
Nsim = getdistrExOption("MCIterations"), ...)
## S3 method for class 'DiscreteMVDistribution,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'DiscreteMVDistribution,function,missing':
E(object, fun,
useApply = TRUE, ...)
## S3 method for class 'AbscontCondDistribution,missing,numeric':
E(object, cond, useApply = TRUE,
low = NULL, upp = NULL,
rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ...)
## S3 method for class 'DiscreteCondDistribution,missing,numeric':
E(object, cond, useApply = TRUE,
low = NULL, upp = NULL, ...)
## S3 method for class 'UnivariateCondDistribution,function,numeric':
E(object, fun, cond,
withCond = FALSE, useApply = TRUE, low = NULL, upp = NULL,
Nsim = getdistrExOption("MCIterations"), ...)
## S3 method for class 'AbscontCondDistribution,function,numeric':
E(object, fun, cond,
withCond = FALSE, useApply = TRUE, low = NULL, upp = NULL,
rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac")
, ...)
## S3 method for class 'DiscreteCondDistribution,function,numeric':
E(object, fun, cond,
withCond = FALSE, useApply = TRUE, low = NULL, upp = NULL,...)
## S3 method for class 'DiscreteCondDistribution,function,numeric':
E(object, fun, cond,
withCond = FALSE, useApply = TRUE, low = NULL, upp = NULL,...)
## S3 method for class 'UnivarLebDecDistribution,missing,missing':
E(object, low = NULL, upp = NULL,
rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ... )
## S3 method for class 'UnivarLebDecDistribution,function,missing':
E(object, fun,
useApply = TRUE, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ... )
## S3 method for class 'UnivarLebDecDistribution,missing,ANY':
E(object, cond,
low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ... )
## S3 method for class 'UnivarLebDecDistribution,function,ANY':
E(object, fun, cond,
useApply = TRUE, low = NULL, upp = NULL,
rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ... )
## S3 method for class 'AcDcLcDistribution,ANY,ANY':
E(object, fun, cond,
low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ... )
## S3 method for class 'CompoundDistribution,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Arcsine,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Beta,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Binom,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Cauchy,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Chisq,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Dirac,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'DExp,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Exp,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Fd,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Gammad,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Gammad,function,missing':
E(object, fun, low = NULL, upp = NULL,
rel.tol = getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"), ...)
## S3 method for class 'Geom,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Gumbel,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'GPareto,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'GPareto,function,missing':
E(object, fun, low = NULL, upp = NULL,
rel.tol = getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = max(10000, getdistrExOption("IQR.fac")), ...)
## S3 method for class 'Hyper,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Logis,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Lnorm,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Nbinom,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Norm,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Pareto,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Pois,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Unif,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Td,missing,missing':
E(object, low = NULL, upp = NULL, ...)
## S3 method for class 'Weibull,missing,missing':
E(object, low = NULL, upp = NULL, ...)"Distribution"fun is computed.cond is computed.distrExIntegrate.IQR.fac$\times$IQR).funsapply, respectively apply
be used to evaluate fun.cond in the argument list of fun.distrExOptions.
Also note that arguments low and upp should be given as
named arguments in order to prevent them to be matched by arguments
fun or cond. Also the result, when arguments
low or upp is given, is the unconditional value of the
expectation; no conditioning with respect to low <= object="" <="upp
is done.=>distrExIntegrate, m1df, m2df,
Distribution-class# mean of Exp(1) distribution
E <- Exp()
E(E) ## uses explicit terms
E(as(E,"AbscontDistribution")) ## uses numerical integration
E(as(E,"UnivariateDistribution")) ## uses simulations
E(E, fun = function(x){2*x^2}) ## uses simulations
# the same operator for discrete distributions:
P <- Pois(lambda=2)
E(P) ## uses explicit terms
E(as(P,"DiscreteDistribution")) ## uses sums
E(as(P,"UnivariateDistribution")) ## uses simulations
E(P, fun = function(x){2*x^2}) ## uses simulations
# second moment of N(1,4)
E(Norm(mean=1, sd=2), fun = function(x){x^2})
E(Norm(mean=1, sd=2), fun = function(x){x^2}, useApply = FALSE)
# conditional distribution of a linear model
D1 <- LMCondDistribution(theta = 1)
E(D1, cond = 1)
E(Norm(mean=1))
E(D1, function(x){x^2}, cond = 1)
E(Norm(mean=1), fun = function(x){x^2})
E(D1, function(x, cond){cond*x^2}, cond = 2, withCond = TRUE, useApply = FALSE)
E(Norm(mean=2), function(x){2*x^2})
E(as(Norm(mean=2),"AbscontDistribution"))
### somewhat less accurate:
E(as(Norm(mean=2),"AbscontDistribution"),
lowerTruncQuantil=1e-4,upperTruncQuantil=1e-4, IQR.fac= 4)
### even less accurate:
E(as(Norm(mean=2),"AbscontDistribution"),
lowerTruncQuantil=1e-2,upperTruncQuantil=1e-2, IQR.fac= 4)
### no good idea, but just as an example:
E(as(Norm(mean=2),"AbscontDistribution"),
lowerTruncQuantil=1e-2,upperTruncQuantil=1e-2, IQR.fac= .1)
### truncation of integration range; see also m1df...
E(Norm(mean=2), low=2,upp=4)
E(Cauchy())
E(Cauchy(),upp=3,low=-2)
# some Lebesgue decomposed distribution
mymix <- UnivarLebDecDistribution(acPart = Norm(), discretePart = Binom(4,.4),
acWeight = 0.4)
E(mymix)Run the code above in your browser using DataLab