E(object, fun, cond, ...)
"E"(object, low = NULL, upp = NULL, Nsim = getdistrExOption("MCIterations"), ...)
"E"(object, fun, useApply = TRUE, low = NULL, upp = NULL, Nsim = getdistrExOption("MCIterations"), ...)
"E"(object, fun, useApply = TRUE, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ...)
"E"(object, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ...)
"E"(object, fun, useApply = TRUE, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ...)
"E"(object, cond, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ...)
"E"(object, fun, cond, useApply = TRUE, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ...)
"E"(object, fun, useApply = TRUE, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, Nsim = getdistrExOption("MCIterations"), ...)
"E"(object, fun, useApply = TRUE, Nsim = getdistrExOption("MCIterations"), ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, fun, useApply = TRUE, ...)
"E"(object, cond, useApply = TRUE, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ...)
"E"(object, cond, useApply = TRUE, low = NULL, upp = NULL, ...)
"E"(object, fun, cond, withCond = FALSE, useApply = TRUE, low = NULL, upp = NULL, Nsim = getdistrExOption("MCIterations"), ...)
"E"(object, fun, cond, withCond = FALSE, useApply = TRUE, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac") , ...)
"E"(object, fun, cond, withCond = FALSE, useApply = TRUE, low = NULL, upp = NULL,...)
"E"(object, fun, cond, withCond = FALSE, useApply = TRUE, low = NULL, upp = NULL,...)
"E"(object, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ... )
"E"(object, fun, useApply = TRUE, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ... )
"E"(object, cond, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ... )
"E"(object, fun, cond, useApply = TRUE, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ... )
"E"(object, fun, cond, low = NULL, upp = NULL, rel.tol= getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ... )
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, fun, low = NULL, upp = NULL, rel.tol = getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac"), ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, fun, low = NULL, upp = NULL, rel.tol = getdistrExOption("ErelativeTolerance"), lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = max(10000, getdistrExOption("IQR.fac")), ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)
"E"(object, low = NULL, upp = NULL, ...)"Distribution"fun is computed. cond is computed. distrExIntegrate.IQR.fac$*$IQR).fun sapply, respectively apply
be used to evaluate fun. cond in the argument list of fun. distrExIntegrate. support
and sum.support and sum.X either "DiscreteDistribution"
or "AbscontDistribution".
X either "UnivarLebDecDistribution".
fun under univariate distributions using
crude Monte-Carlo integration. fun under univariate Lebesgue decomposed distributions
by separate calculations for discrete and absolutely continuous part. fun under absolutely continuous
univariate distributions using distrExIntegrate. fun under discrete univariate
distributions using support and sum. fun under discrete multivariate
distributions. The computation is based on support and sum. cond.
The integral is computed using crude Monte-Carlo integration. cond. The computation
is based on distrExIntegrate. cond. The computation is based
on support and sum. fun under univariate conditional distributions
given cond. The integral is computed using crude Monte-Carlo integration. fun under absolutely continuous,
univariate conditional distributions given cond. The
computation is based on distrExIntegrate. fun under discrete, univariate
conditional distributions given cond. The computation is
based on support and sum. mixCoeff.mixCoeff.mixCoeff.mixCoeff."UnivarLebDecDistribution"
and using the corresponding method.
SummandsDistr is of
class UnivariateDistribution) the formula
$E[N]E[S]$ for $N$ the frequency distribution and
$S$ the summand distribution; else we coerce to
"UnivarLebDecDistribution".
distrExOptions.
Also note that arguments low and upp should be given as
named arguments in order to prevent them to be matched by arguments
fun or cond. Also the result, when arguments
low or upp is given, is the unconditional value of the
expectation; no conditioning with respect to low <= object="" <="upp
is done.=>distrExIntegrate, m1df, m2df,
Distribution-class# mean of Exp(1) distribution
E <- Exp()
E(E) ## uses explicit terms
E(as(E,"AbscontDistribution")) ## uses numerical integration
E(as(E,"UnivariateDistribution")) ## uses simulations
E(E, fun = function(x){2*x^2}) ## uses simulations
# the same operator for discrete distributions:
P <- Pois(lambda=2)
E(P) ## uses explicit terms
E(as(P,"DiscreteDistribution")) ## uses sums
E(as(P,"UnivariateDistribution")) ## uses simulations
E(P, fun = function(x){2*x^2}) ## uses simulations
# second moment of N(1,4)
E(Norm(mean=1, sd=2), fun = function(x){x^2})
E(Norm(mean=1, sd=2), fun = function(x){x^2}, useApply = FALSE)
# conditional distribution of a linear model
D1 <- LMCondDistribution(theta = 1)
E(D1, cond = 1)
E(Norm(mean=1))
E(D1, function(x){x^2}, cond = 1)
E(Norm(mean=1), fun = function(x){x^2})
E(D1, function(x, cond){cond*x^2}, cond = 2, withCond = TRUE, useApply = FALSE)
E(Norm(mean=2), function(x){2*x^2})
E(as(Norm(mean=2),"AbscontDistribution"))
### somewhat less accurate:
E(as(Norm(mean=2),"AbscontDistribution"),
lowerTruncQuantil=1e-4,upperTruncQuantil=1e-4, IQR.fac= 4)
### even less accurate:
E(as(Norm(mean=2),"AbscontDistribution"),
lowerTruncQuantil=1e-2,upperTruncQuantil=1e-2, IQR.fac= 4)
### no good idea, but just as an example:
E(as(Norm(mean=2),"AbscontDistribution"),
lowerTruncQuantil=1e-2,upperTruncQuantil=1e-2, IQR.fac= .1)
### truncation of integration range; see also m1df...
E(Norm(mean=2), low=2,upp=4)
E(Cauchy())
E(Cauchy(),upp=3,low=-2)
# some Lebesgue decomposed distribution
mymix <- UnivarLebDecDistribution(acPart = Norm(), discretePart = Binom(4,.4),
acWeight = 0.4)
E(mymix)
Run the code above in your browser using DataLab