
The function computes global empirical Bayes estimates for rates "shrunk" to the overall mean.
EBest(n, x, family="poisson")
a numeric vector of counts of cases
a numeric vector of populations at risk
either "poisson" for rare conditions or "binomial" for non-rare conditions
A data frame with two columns:
a numerical vector of raw (crude) rates
a numerical vector of empirical Bayes estimates
and a parameters attribute list with components:
global method of moments phi value
global method of moments gamma value
Details of the implementation for the "poisson" family are to be found in Marshall, p. 284--5, and Bailey and Gatrell p. 303--306 and exercise 8.2, pp. 328--330. For the "binomial" family, see Martuzzi and Elliott (implementation by Olaf Berke).
Marshall R M (1991) Mapping disease and mortality rates using Empirical Bayes Estimators, Applied Statistics, 40, 283--294; Bailey T, Gatrell A (1995) Interactive Spatial Data Analysis, Harlow: Longman, pp. 303--306, Martuzzi M, Elliott P (1996) Empirical Bayes estimation of small area prevalence of non-rare conditions, Statistics in Medicine 15, 1867--1873.
# NOT RUN {
auckland <- st_read(system.file("shapes/auckland.shp", package="spData")[1], quiet=TRUE)
res <- EBest(auckland$M77_85, 9*auckland$Und5_81)
attr(res, "parameters")
auckland$estmm000 <- res$estmm*1000
plot(auckland[,"estmm000"], breaks=c(0,2,2.5,3,3.5,5),
main="Infant mortality per 1000 per year")
data(huddersfield, package="spData")
res <- EBest(huddersfield$cases, huddersfield$total, family="binomial")
round(res[,1:2],4)*100
# }
Run the code above in your browser using DataLab