data.frame
of them. This function is an empirical parallel to simCOP
that is used for parametric copulas. If circumstances require conditional simulation of $V|U$, then function EMPIRsimv
, which produces a vector of $V$ from a fixed $u$, should be used.For the usual situation in which an individual $u$ during the simulation loops is not a value aligned on the grid, then the bounding conditional quantile functions are solved for each of the $n$ simulations and the following interpolation is made by
EMPIRsim(n=100, empgrid=NULL, kumaraswamy=FALSE, ploton=TRUE, points=TRUE, ...)
EMPIRgrid
;EMPIRgridderinv
. The Kumaraswamy distribution is a distribution having support $[0,1]$ with an explpoints()
function in R; andpoints()
function or to EMPIRgridderinv
.data.frame
of the simulated values is returned.EMPIRgrid
, EMPIRgridderinv
, EMPIRsimv
pdf("EMPIRsim_experiment.pdf")
nsim <- 5000
para <- list(alpha=0.15, beta=0.65,
cop1=PLACKETTcop, cop2=PLACKETTcop, para1=0.005, para2=1000)
set.seed(1)
uv <- simCOP(n=nsim, cop=composite2COP, para=para, pch=16, col=rgb(0,0,0,.2))
mtext("A highly complex simulated bivariate relation")
# set.seed(1) # try not resetting the seed
uv.grid <- EMPIRgrid(para=uv, deluv=0.025)
tmp <- EMPIRsim(n=nsim, empgrid=uv.grid, kumaraswamy=FALSE, col=rgb(1,0,0,0.1),pch=16)
mtext("Resimulation without Kumaraswamy smoothing")
tmp <- EMPIRsim(n=nsim, empgrid=uv.grid, kumaraswamy=TRUE, col=rgb(1,0,0,0.1),pch=16)
mtext("Resimulation but using the Kumaraswamy Distribution for smoothing")
dev.off()
# See other examples under EMPIRsimv
Run the code above in your browser using DataLab