Last chance! 50% off unlimited learning
Sale ends in
Fit the Extended Pareto Distribution (EPD) to data using Maximum Likelihood Estimation (MLE).
EPDfit(data, tau, start = c(0.1, 1), warnings = FALSE)
Vector of
Value for the
Vector of length 2 containing the starting values for the optimisation. The first element
is the starting value for the estimator of c(0.1,1)
.
Logical indicating if possible warnings from the optimisation function are shown, default is FALSE
.
A vector with the MLE estimate for the
See Section 4.2.1 of Albrecher et al. (2017) for more details.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant, J., Joossens, E. and Segers, J. (2009). "Second-Order Refined Peaks-Over-Threshold Modelling for Heavy-Tailed Distributions." Journal of Statistical Planning and Inference, 139, 2800--2815.
# NOT RUN {
data(soa)
# Look at last 500 observations of SOA data
SOAdata <- sort(soa$size)[length(soa$size)-(0:499)]
# Fit EPD to last 500 observations
res <- EPDfit(SOAdata/sort(soa$size)[500], tau=-1)
# }
Run the code above in your browser using DataLab