# NOT RUN {
data(DataExam4.4)
library(tidyverse)
library(ggplot2)
library(dae)
fm4.6 <- aov(
formula = Height~Rep+Irrig*Ferti*SeedDLot+Error(Rep/Irrig:Ferti)
, data = DataExam4.4
#, subset
#, weights
#, na.action
, method = "qr"
, model = TRUE
, x = FALSE
, y = FALSE
, qr = TRUE
, singular.ok = TRUE
, contrasts = NULL
)
summary(fm4.6)
DataExam4.4 %>%
dplyr::group_by(Irrig) %>%
dplyr::summarize(Mean=mean(Height))
DataExam4.4 %>%
dplyr::group_by(Ferti) %>%
dplyr::summarize(Mean=mean(Height))
DataExam4.4 %>%
dplyr::group_by(SeedDLot) %>%
dplyr::summarize(Mean=mean(Height))
DataExam4.4 %>%
dplyr::group_by(Irrig,Ferti) %>%
dplyr::summarize(Mean=mean(Height))
DataExam4.4 %>%
dplyr::group_by(Irrig,SeedDLot) %>%
dplyr::summarize(Mean=mean(Height))
DataExam4.4 %>%
dplyr::group_by(Ferti,SeedDLot) %>%
dplyr::summarize(Mean=mean(Height))
DataExam4.4 %>%
dplyr::group_by(Irrig,Ferti,SeedDLot) %>%
dplyr::summarize(Mean=mean(Height))
RESFIT <- data.frame(residualvalue=residuals(fm4.6),fittedvalue=fitted.values(fm4.6))
ggplot(RESFIT,aes(x=fittedvalue,y=residualvalue))+
geom_point(size=2)+
labs(x="Residual vs Fitted Values",y="")+
theme_bw()
# }
Run the code above in your browser using DataLab