ExpressionSet class is derived from
eSet, and requires a matrix named exprs as
assayData member.
## Instance creation
ExpressionSet(assayData, phenoData=annotatedDataFrameFrom(assayData, byrow=FALSE), featureData=annotatedDataFrameFrom(assayData, byrow=TRUE), experimentData=MIAME(), annotation=character(), protocolData=annotatedDataFrameFrom(assayData, byrow=FALSE), ...)
## Additional methods documented belowmatrix of expression values, or an
environment. When assayData is a matrix, the rows represent probe
sets (features in ExpressionSet parlance). Columns
represent samples. When present, row names identify features and
column names identify samples. Row and column names must be unique,
and consistent with row names of featureData and
phenoData, respectively. The assay data can be retrieved with
exprs().
When assayData is an environment, it contains identically
dimensioned matrices like that described in the previous
paragraph. One of the elements of the environment must be named
exprs; this element is returned with exprs().
AnnotatedDataFrame containing
information about each sample. The number of rows in
phenoData must match the number of columns in
assayData. Row names of phenoData must match column
names of the matrix / matricies in assayData.AnnotatedDataFrame containing
information about each feature. The number of rows in
featureData must match the number of rows in
assayData. Row names of featureData must match row
names of the matrix / matricies in assayData.MIAME instance with meta-data
(e.g., the lab and resulting publications from the analysis) about
the experiment.character describing the platform on which
the samples were assayed. This is often the name of a Bioconductor
chip annotation package, which facilitated down-stream analysis.AnnotatedDataFrame containing
equipment-generated information about protocols. The number of rows
and row names of protocolData must agree with the dimension
and column names of assayData.new("ExpressionSet", ...) and available for classes that extend
ExpressionSet.
eSet.ExpressionSet instances are usually created through
ExpressionSet(). eSet:
assayData:nrow(phenoData). assayData must contain a matrix
exprs with rows representing features (e.g., probe sets)
and columns representing samples. Additional matrices of
identical size (e.g., representing measurement errors) may
also be included in assayData. Class:AssayData-classphenoData:eSetfeatureData:eSetexperimentData:eSetannotation:eSetprotocolData:eSetas(exprSet,"ExpressionSet")exprSet-class to ExpressionSetas(object,"data.frame")ExpressionSet-class to data.frame by
transposing the expression matrix and concatenating phenoDataexprs(ExpressionSet), exprs(ExpressionSet,matrix)<-exprs in the AssayData-class
slot.esApply(ExpressionSet, MARGIN, FUN,
...)ExpressionSet objects. See esApply.write.exprs(ExpressionSet)write.tableeSet:
updateObject(object, ..., verbose=FALSE)updateObject and eSetisCurrent(object)isCurrentisVersioned(object)isVersionedassayData(ExpressionSet):eSetsampleNames(ExpressionSet) and sampleNames(ExpressionSet)<-:eSetfeatureNames(ExpressionSet), featureNames(ExpressionSet, value)<-:eSetdims(ExpressionSet):eSetphenoData(ExpressionSet), phenoData(ExpressionSet,value)<-:eSetvarLabels(ExpressionSet), varLabels(ExpressionSet, value)<-:eSetvarMetadata(ExpressionSet), varMetadata(ExpressionSet,value)<-:eSetpData(ExpressionSet), pData(ExpressionSet,value)<-:eSetvarMetadata(ExpressionSet), varMetadata(ExpressionSet,value)eSetexperimentData(ExpressionSet),experimentData(ExpressionSet,value)<-:eSetpubMedIds(ExpressionSet), pubMedIds(ExpressionSet,value)eSetabstract(ExpressionSet):eSetannotation(ExpressionSet), annotation(ExpressionSet,value)<-eSetprotocolData(ExpressionSet), protocolData(ExpressionSet,value)<-eSetcombine(ExpressionSet,ExpressionSet):eSetstorageMode(ExpressionSet), storageMode(ExpressionSet,character)<-:eSetinitialize(ExpressionSet):new; not to be called directly by the user.updateObject(ExpressionSet):ExpressionSet to their current definition. See
updateObject, Versions-class.validObject(ExpressionSet):exprs is a member of
assayData. checkValidity(ExpressionSet) imposes this
validity check, and the validity checks of eSet.makeDataPackage(object, author, email, packageName, packageVersion, license, biocViews, filePath, description=paste(abstract(object), collapse="\n\n"), ...)makeDataPackage.as(exprSet,ExpressionSet):exprSet to ExpressionSet.as(eSet,ExpressionSet):eSet portion of an object to ExpressionSet.show(ExpressionSet)eSetdim(ExpressionSet), ncoleSetExpressionSet[(index):eSetExpressionSet$, ExpressionSet$<-eSetExpressionSet[[i]], ExpressionSet[[i]]<-eSeteSet-class, ExpressionSet-class.
# create an instance of ExpressionSet
ExpressionSet()
ExpressionSet(assayData=matrix(runif(1000), nrow=100, ncol=10))
# update an existing ExpressionSet
data(sample.ExpressionSet)
updateObject(sample.ExpressionSet)
# information about assay and sample data
featureNames(sample.ExpressionSet)[1:10]
sampleNames(sample.ExpressionSet)[1:5]
experimentData(sample.ExpressionSet)
# subset: first 10 genes, samples 2, 4, and 10
expressionSet <- sample.ExpressionSet[1:10,c(2,4,10)]
# named features and their expression levels
subset <- expressionSet[c("AFFX-BioC-3_at","AFFX-BioDn-5_at"),]
exprs(subset)
# samples with above-average 'score' in phenoData
highScores <- expressionSet$score > mean(expressionSet$score)
expressionSet[,highScores]
# (automatically) coerce to data.frame
lm(score~AFFX.BioDn.5_at + AFFX.BioC.3_at, data=subset)
Run the code above in your browser using DataLab