ExpressionSet class is derived from
  eSet, and requires a matrix named exprs as
  assayData member.
## Instance creation
ExpressionSet(assayData, phenoData=annotatedDataFrameFrom(assayData, byrow=FALSE), featureData=annotatedDataFrameFrom(assayData, byrow=TRUE), experimentData=MIAME(), annotation=character(), protocolData=annotatedDataFrameFrom(assayData, byrow=FALSE), ...)
## Additional methods documented belowmatrix of expression values, or an
    environment.    When assayData is a matrix, the rows represent probe
    sets (features in ExpressionSet parlance).  Columns
    represent samples. When present, row names identify features and
    column names identify samples. Row and column names must be unique,
    and consistent with row names of featureData and
    phenoData, respectively. The assay data can be retrieved with
    exprs().
    When assayData is an environment, it contains identically
    dimensioned matrices like that described in the previous
    paragraph. One of the elements of the environment must be named
    exprs; this element is returned with exprs().
AnnotatedDataFrame containing
    information about each sample. The number of rows in
    phenoData must match the number of columns in
    assayData. Row names of phenoData must match column
    names of the matrix / matricies in assayData.AnnotatedDataFrame containing
    information about each feature. The number of rows in
    featureData must match the number of rows in
    assayData. Row names of featureData must match row
    names of the matrix / matricies in assayData.MIAME instance with meta-data
    (e.g., the lab and resulting publications from the analysis) about
    the experiment.character describing the platform on which
    the samples were assayed. This is often the name of a Bioconductor
    chip annotation package, which facilitated down-stream analysis.AnnotatedDataFrame containing
    equipment-generated information about protocols. The number of rows
    and row names of protocolData must agree with the dimension
    and column names of assayData.new("ExpressionSet", ...) and available for classes that extend
    ExpressionSet.
  eSet.ExpressionSet instances are usually created through
  ExpressionSet(). eSet:
   assayData:nrow(phenoData). assayData must contain a matrix
	exprs with rows representing features (e.g., probe sets)
	and columns representing samples. Additional matrices of
	identical size (e.g., representing measurement errors) may
	also be included in assayData. Class:AssayData-classphenoData:eSetfeatureData:eSetexperimentData:eSetannotation:eSetprotocolData:eSetas(exprSet,"ExpressionSet")exprSet-class to ExpressionSetas(object,"data.frame")ExpressionSet-class to data.frame by
      transposing the expression matrix and concatenating phenoDataexprs(ExpressionSet), exprs(ExpressionSet,matrix)<-exprs in the AssayData-class
       slot.esApply(ExpressionSet, MARGIN, FUN,
         ...)ExpressionSet objects. See esApply.write.exprs(ExpressionSet)write.tableeSet:
   updateObject(object, ..., verbose=FALSE)updateObject and eSetisCurrent(object)isCurrentisVersioned(object)isVersionedassayData(ExpressionSet):eSetsampleNames(ExpressionSet) and sampleNames(ExpressionSet)<-:eSetfeatureNames(ExpressionSet), featureNames(ExpressionSet, value)<-:eSetdims(ExpressionSet):eSetphenoData(ExpressionSet), phenoData(ExpressionSet,value)<-:eSetvarLabels(ExpressionSet), varLabels(ExpressionSet, value)<-:eSetvarMetadata(ExpressionSet), varMetadata(ExpressionSet,value)<-:eSetpData(ExpressionSet), pData(ExpressionSet,value)<-:eSetvarMetadata(ExpressionSet), varMetadata(ExpressionSet,value)eSetexperimentData(ExpressionSet),experimentData(ExpressionSet,value)<-:eSetpubMedIds(ExpressionSet), pubMedIds(ExpressionSet,value)eSetabstract(ExpressionSet):eSetannotation(ExpressionSet), annotation(ExpressionSet,value)<-eSetprotocolData(ExpressionSet), protocolData(ExpressionSet,value)<-eSetcombine(ExpressionSet,ExpressionSet):eSetstorageMode(ExpressionSet), storageMode(ExpressionSet,character)<-:eSetinitialize(ExpressionSet):new; not to be called directly by the user.updateObject(ExpressionSet):ExpressionSet to their current definition. See
      updateObject, Versions-class.validObject(ExpressionSet):exprs is a member of
      assayData. checkValidity(ExpressionSet) imposes this
      validity check, and the validity checks of eSet.makeDataPackage(object, author, email, packageName, packageVersion, license, biocViews, filePath, description=paste(abstract(object), collapse="\n\n"), ...)makeDataPackage.as(exprSet,ExpressionSet):exprSet to ExpressionSet.as(eSet,ExpressionSet):eSet portion of an object to ExpressionSet.show(ExpressionSet)eSetdim(ExpressionSet), ncoleSetExpressionSet[(index):eSetExpressionSet$, ExpressionSet$<-eSetExpressionSet[[i]], ExpressionSet[[i]]<-eSeteSet-class, ExpressionSet-class.
# create an instance of ExpressionSet
ExpressionSet()
ExpressionSet(assayData=matrix(runif(1000), nrow=100, ncol=10))
# update an existing ExpressionSet
data(sample.ExpressionSet)
updateObject(sample.ExpressionSet)
# information about assay and sample data
featureNames(sample.ExpressionSet)[1:10]
sampleNames(sample.ExpressionSet)[1:5]
experimentData(sample.ExpressionSet)
# subset: first 10 genes, samples 2, 4, and 10
expressionSet <- sample.ExpressionSet[1:10,c(2,4,10)]
# named features and their expression levels
subset <- expressionSet[c("AFFX-BioC-3_at","AFFX-BioDn-5_at"),]
exprs(subset)
# samples with above-average 'score' in phenoData
highScores <- expressionSet$score > mean(expressionSet$score)
expressionSet[,highScores]
# (automatically) coerce to data.frame
lm(score~AFFX.BioDn.5_at + AFFX.BioC.3_at, data=subset)
Run the code above in your browser using DataLab